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We have to solve the following differential equation
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Weak form
From (1} and (2},
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which, after integrating by parts, becomes
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Therefore, the weak form of the problem is:
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where 4 o 4l = Z}’:D a;N;, known as the FE approximation. Nj are the so called shape functions, shown

in Figure 1 for j = 0,...,3.

Linear system of equations

We proceed to discretize the weak form of the differential equation by using the above definition of 1. For
the weights W, we use the Galerkin procedure: W = W; = N;. Then,
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Now, defining fﬂ o dedx =Ky, fo Nifdx = fi, N; ldt .

Y oKy = fi+3; (10}
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= g;, the last expression can be rewritten as:

which is the linear system of eguations that must be computed in order to solve the differential equation
given.




Global shape functions
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Figure 1: Global shape functions. Nodes are shown in blue, while each element is shown in red.

FE approximation

We now set (1) and (2) as:
—22 —sinx @
u(0)=0,u(l)=3 (12)
with 1 ~ u! = ):?:0 a;N;

We will use local coordinates to solve the linear system of equations given in (10). This means that instead
of working with the shape functions shown in Figure 1, we use the ones shown in the following Figure:
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Figure 2: Local shape functions. Nodes are shown in blue, while each element is shown in red.

Therefore, for the first element,

KO = [PINOIND 13

00 *fo dx dx _fo e 1
1/3 dN(l) dN(l) 1/3

K fo ﬁ d; de=— fn 9dx = —3 = K} (14)

K(]_J B f1/3 dN](.l) let.l)d _ /1/3 S 15

= f dx  dx 0 ' o



Since all the three elements have the same size and properties, Nél) = N(z)

N]m = Nl(z) = N1(3) = 3x. This means thai:
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We go on computing f;,
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And for similar reasons as before, f; () .. f f(3) 1(2) = fl(s). Now, for g;:
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where in the right-hand side of each g; there is the expression in global coordinates. Notice that in globat
coordinates is easy to see that @ _ g g g =
y to see that g —q; * and g ff

Finally, the following matrix equation can be computed:
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which becomes,
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It is easy to see that (29) yields to the following system of equations:
1
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Once it is solved,

1
ap =z (4 — cos (%)) =2 1.018348 iy = % (7 —cos (%—)) =2 2.018347 (32)

and then, replacing (32) into the other two equations of (29) (which arise from its first row and its last
row) yields to:
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We finally compare these numerical results with the ones obtained from the analytical solution of the
equation (u(x) =sinx+ (3 —sin1) x):
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Figure 3: Comparison between 1 ~ yf — ):,?:0 a;N; (FE solution) and u (x) = sinx + (3 — sin 1) x (analyti-
cal solution).




