Finite Elements Method

Plane Elasticity
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Our aim is to study the deformation of a triangular thin plate under its sell weight and an imposed
vertical displacement & on the tip. Figure 1 shows that, due to the symmetry of the problem, it is enough
to analyze the left hatf of the domain (£2).

Figure 1: Geometry of the structure and triangular elements mesh, where node numbers are in the squared
boxes and element numbers are in circles.

We will use 2D triangular elements to work out the problem under the assumption of plane stress, since
the thickness £ of the plate is much smaller than the other two dimensions. In fact, we set t = 1. Moreover,
alt the loads are contained in the middle plane of the structure, so it is worth to make this assumption.

1 Strong form equation and boundary conditions

Assuming that the problem is stationary (so there js no time dependence}, the equilibrium between the
body forces and the stress field related to ¢ is given by:
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In our case, b = (0, —pg), because the structure is under its self-weight, and o; = 0 because we assume
plane stress. Thus, the only non-zero components of o are oy, oy and Tuy = Ty

The relation between the stress field o and the strain vector ¢ is given by the elastic matrix D,

o =De @)
where
dyp diz diz 1 v 0 T
E du du @ o
D= |dy dip dpg} =5 (v 1 0 s:[gx,sy,%yf:[é.‘é,g,a_j‘Jra_z] =Lu (3)
dy1 dz dag 00 Lt ¥y @

E is the Young’s modulus, v is the Poisson’s ratio, and # = u (x,)) and v = v{x,y) are the components
of the displacement vector u(x,y), which tell us the displacements of a point in directions x and y,
respectively. Moreover,
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which allows us to rewritte {1} as
LYe+b=0in0 (5)
using (2) and (3), it becomes .
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which is nothing but the strong form of the problem, because it involves second derivatives of u.




Concerning the boundary conditions (T, [T = 30, T, T = 0), we have:

¢ Dirichlet boundary conditions (T, ):
u=0onT, @)

In particular, the prescribed nodal displacements will be:
ui(x, ) =(u,v)) =0 i=1,2,3 g = ttg, = 0 vg = —& (8)

¢ Neumann boundary conditions (I'y). Considering the prescribed traction vector t = 0,
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where ny, 1, are the components of the normal vector fi. The Dirichlet boundary conditions are
applied at uy = (14, v4) , vs. For this last one, we will only have f;; == 0, since w5 is prescribed.

2 Nodal coordinates and conectivity matrix

The mesh shown in Figure 1 has 6 nodes and 4 triangular elements. The array of nodal coordinates X is:
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where each column of (11} corresponds to one node of the mesh. The relation between the global nodal
representation and the local one is given by the connectivity matrix T,
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where each row corresponds to one element and each column corresponds to one local node. For instance,
for the first element, we can express global node 2 as the local node 1, global node 4 as the local node 2,
and global node 1 as the local node 3. The local node 1 of each element corresponds to the node in the
right angle vertex. This selection has been in order to simplify the computations.

3 Setting the system of equations

Our aim is to compute the unknown displacements in the global nodes 4 and 5 trough a system of
equations after applying the finite element method:

Ka = § (13)

where K is the Stiffness matrix, a contains the unknowns (displacements) and f is related to the forces
acting on the system '. To do this, we have to rewrite the strong form of the equilibrium equation into
its weak form. Therefore, we will get the equilibrium equation in terms of the first derivatives instead of
in the second derivatives, and we will use €V continuous elements. This transformation can be done by
applying the virtual work principle.

1See equations (22), (27) and (28) for further details.




Once the weak form is found, it is discretized using FEM:
umu = (u“,v") = (ENizai,Zvaf) (14)
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where N; are the shape functions for a 3noded triangular element.

For this kind of shape functions, it is easy to write an element stiffness submatrix Kl{;):
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where there are as many B; as element nodes. In the case of a 3-noded triangle,
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with b; = y; — yx, ¢; = xp — x;, and Al = = 1.125 m? the triangular element’s area. Since we have

four elements, this means that we will have four B, e=1,2,3,4:
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And then, using (15}, one can find KS), Kg), K:gg), etc.

Using the connectivity matrix one can make the assembly process in order to find the Stiffness matrix K,
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Once K has been found, we proceed to compute f, the force vector. As it happened before, we will
compute f in terms of £(€), which is

R N N L TN (23)

where f,ge) , ft(f ), fi(f), fEE) are the equivalent nodal force vectors due to initial strains, initial stresses,
body forces and surface tensions, respectively. In our case, we will only consider body forces, so (23)

becomes:
gle) — fz(f) = / ()NTbtdA e=1,2,34 (24)
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where, if we consider that the body forces are uniformly distributed over the element, each node has a
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because we have particularized for ¢ = 1 and for the self-weight with gravity acting along the y-axis as
the body force. Now, in a similar way as for K, we set f:

t=[h, b £ f f5 £ (26)
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Finally, concerning the node displacements,
a=lu, w, w, w, ous, u) =[0, 0, 0, (s w} {0 v} {0 —8}]7 @8

Replacing (22), (27) and {28) into (13),
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which is a 12 x 12 system of equations. Nevertheless, since the displacements for some rows are already
known, it turns to be the following 6 x 6 system:
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Notice that this system will be, in fact, a 3 X 3 one, because the node displacements us, 1t and vg are also
prescribed. Therefore, the system of equations will have three degrees of freedom.

We will set the 3 x 3 system in the following section, where we will compute explicitly the values of I(r(f) .

4 Solving the system of equations

We are now asked to solve (30) with £ = 10 GPa = 10 Pa, v = 0.2, § = 1072 m and pg = 10° N/m2.




First of all, let’s compute all the necessary Kj(f) To do so, we can use {15)
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However, since its integrand is constant, (31) becomes:
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We will now compute the K of (30) using (32) and taking into account (17), (18}, (19), (20) and (3). After
that, replacing the values mto (30), we get
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and now, thanks to the prescribed displacements in some nodes, it is straightforward to rewrite as

o [ 28 06 067 fu — 021"
Zo1-06 28 08| |wf=] -1125 (349)

192106 08 28] |us #1125_%

After solving this system we find the unknown nodat displacements of the plate:

1y = —0.000128205128205 m ~ —0.128 mm (35)
vy = —0.001132586632479 m =~ —1.133 mm (36)
vs = —0.003867629367521 m ~ -3.868 mm 37

And finally, from (14), we compute u.
T
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with ug = (—0.000128205128205, —0.001132586632479), ug = (0, —0.003867629367521), ug = (O, *1(}”2).
The other nodal displacements are 0. However, we first have to compute the shape functions, with:
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which depend on the element. Finally, replacing this in (38),
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+ (1.5x — 1.5¢) u5 + L5yus + (—2.25 + 1.5y) ug])”

Notice that each of this shape functions is 1 on its node (within its element) and 0 at the other nodes. For
instance, N§? = s (—2.25+ 1.51)| (=225 +15-3) = 1, but N{ = ;1 (~2.25 4 15%)
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2-_155 (—225+15-15) =0, Né ) — 755 (~2.25 +1.5x) o = 7z (2254 1.5 1.5) = 0. Now, replacing

the values of uy, us, ug,

u’ = [5.698 +107° (6.75 - 3x + 3y), (6.75 — 3x + 3y) 5.0337 - 10~* (43)

T
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Finally, we just have to concern about the elements that share an edge, and the solution there must come
from one of the elements, not both. This is why we normalize (43) with a factor N, = 1,2,3, since up to
three elements can share a certain point {x,y). For instance, if N, = 2, the factor 1/2 takes into account

only the contribution of a single element instead of 2. The value that N, takes a decision of the reader,
depending on where he/she wants to compute the solution.

To sum up,

u = Ni [5.698 +107° (6.75 — 3x + 3y) , (675 — 3x +3y) 5.0337 - 104 + —1.7189 - 10 % (—2.25 4 3x) (44)
e
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