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FINITE ELEMENTS January 20, 2014
Time allowed: 2:00 hours

All the exam should be developed on this sheets. No additional sheets will be cor-
rected.

1. The Poisson equation is solved using the Finite Element Method in a rectangular domain of
height H and width 3H. The problem is stated as follows

Ay =f inQ
u =z onlpcCanN

where the source term f is constant and the Dirichlet boundary I'p includes the two lateral
sides of the domain (z = 0 and =z = 3H). In the rest of the boundary natural boundary
conditions (homogeneous Neumann) are imposed.

The mesh is constituted by 8 nodes and 6 triangular three-noded elements and it is charac-
terized by the following nodal coordinates and connectivity:

rTH 07
2H 0 [6 1 5]
2H H 4 5 1
K= 1;)—[ g and T = ; 2 ;L
0 0 2 7 3
3H 0 |7 8 3]
3H H J

a) Represent graphically the mesh, numbering the elements and the nodes (both local and
global node numbering).

b) Compute the 3x3 elementary stiffness matrix for the first element (with vertices (0,0),
(H,0) and (0,H)). Give the expressions of the shape functions and their derivatives.

c) Noting that all the elements in the mesh are similar to the first element, assemble the
global 8x8 stiffness matrix without accounting for Dirichlet boundary conditions.

d) Repeat questions b and ¢ for the force term vector.

e) Use the Dirichlet boundary conditions and find the reduced 4x4 linear system of equa-
tions to be solved.
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2. The following ODE has to be solved using the Finite Element Method

—u"+u =f in]0,1]
u(0) =0 atz=0
() =a atz=1
with a uniform discretization {zo, 21, %3, 24,24}, with z; = ¢/4, for i = 0,1,...,4, and both
a mesh of 4 linear elements and a mesh of 2 quadratic elements.

a) Find the weak form of the problem.

b) Obtain the general expression of the elementary matrices for linear and quadratic ele-
ments.

¢) Assemble the global matrices in the two cases.
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3. COMMENT ON THE APPROPRIATENESS OF EACH OF THE FOLLOWING STATE-
MENTS, DISCUSSING WHICH PARTS ARE TRUE AND WHICH ARE FALSE.

a) The finite element approximation in the linear elastic problem in 1D should satisfy certain

conditions which guarantee that as the mesh is refined, the numerical solution converges to
the exact one. These are:

)(Q‘-I‘nhe continuity condition: the displacement should have CO continuity within each ele-
ent and along the elemey interfaces.
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The derivability condition: the derivatives of the function approximating the displace-
ment should exist up to the order of the derivatives appearing in the element integrals.
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% The integrability condition: the integrals appearing in the element expressions must |

have a primitive function. If m-th order derivative of the displacement field appear in
the weak form, the shape functions must be C™+1 /(
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| The rigid body condition: when a rigid body motion is imposed, no strain should occur

in the element. That is satisfied for a single element is the sum of the shape functions
derivatives at any point is equal to 1
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. The constant strain condition: the displacement function has to be such that is nodal
displacements are compatible with a constant strain field, such constant strain should
be obtained. This condition is incorporated by the rigid body condition.
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b) About error estimates.

1. A priori error estimates are not well suited to compute the level of error of the FE
approximation.
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2. On the contrary, a posteriori error estimates deliver an upper-bound of the actual error,
provided it is measured with the energy norm.
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3. If the user prefers other measures of the error (different than the energy norm), a pos-
teriori error estimates cannot be used anymore.
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c) In the context of Structural Dynamics.

1. The modal approach is always preferred to the direct time integration because the num-
ber of d.o.f. is drastically reduced.
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2. The stability of the Newmark method is guaranteed independently of the selected At.
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3. In modal analysis, the convergence ratio is different for every eigen-mode, being better
for those associated with lower eigen-frequencies
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