NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
AY 2013/2014

Lecturers: Marco Discacciati, Esther Sala Lardies

Qualification system:
- 3 sets of exercises
- 2 assignments (homework)

- final exam



Numerical Methods for Partial Differential Equations

Basics

Marked questions (*) have to be handed in for marking.

1*. In 1225, Leonardo of Pisa (also known as Fibonacci) was requested to solve a collection
of mathematical problems in order to justify his fame and prestige in the court of
Federico II. One of the proposed problems can be formulated as the solution of a third
degree polynomial equation

f(x) :=2*+22* + 100 — 20 = 0 (1)

Note that the solution of cubic equations was a extremely difficult problem in the 13th
century. Here iterative methods are considered for the solution of equation (1).

Compute the unique real root of (1) with 4 iterations of Newton’s method with the
initial approximation z° = v/20 (which is obtained neglecting the monomials with
and 2 in front of the monomial with ). Plot the convergence graphic. Does Newton’s

method behave as expected?

2. Solve equation
f(x) =2 —cosx
a) with interval-halving starting with = 0.5 and 1.0.
b) with Newton’s method. Use xy = 1.0 as the starting value.

c¢) with the secant method. Use x = 0.5 and 1.0 as starting values.

3. Solve the following system of nonlinear equations
(x=1)°+(y-2?=3
22 P
I AR |
4 * 3

using Newton-Raphson’s method

4. Use Newton divided differences to construct the interpolating polynomial given the set
of data:
Ty = 35, 1 = 36, Lo = 37, T3 = 3.8

Flxo) = 0.285714, f(x1) = 0.277778, f(x2) = 0.270270, f(z5) = 0.263158




5*. We are interested in the definition of third-order numerical quadratures in interval

.

(0,1)

a) Determine the minimum number of integration points, and specify the integration

b)

points and weights.

Is it possible to obtain a third-order quadrature with the following four integration
points: g = 1/4, x1 = 1/2, x5 = 3/4 and x3 = 17 If it is possible, compute the
corresponding weights; otherwise, justify why not.

If n 4+ 1 points Gaussian quadrature is used for numerical integration state the
order of the polynomial that is integrated exactly.

If n = 2 is selected for Gaussian quadrature, which (if any) of the following
integrals will be integrated exactly?

i) fol sinzdr i) fol rd3dr i) fol ztde  v) fol 55 dx

Compute fol 12z dr, f01(5x3 + 2x) dx by hand calculation using

i) Trapezoidal rule over 2 uniform intervals

ii) Simpson’s rule over 2 uniform intervals

Compute the error of both approximations. Are the methods behaving as expected?

. Transform the integral

/a ’ f(a) dz

such that integration limits are [—1, 1].

. Decide and justify if the following statements are true or false.

a) For m < n, a polynomial least-squares fitting with degree m and n + 1 different

data points can always be computed with the normal equations. For n = m the
least-squares fitting leads to the pure interpolation polynomial. For n < m

< f,g>= Zf(l"z)g(flfz)

is not an scalar product in the space of polynomials P™, an the matrix of the
normal equations becomes singular.

b) A function f(x) is known at n + 1 points. For the computation of the integral of

f(z) it is preferable to consider a Gauss quadrature instead of a Newton-Cotes
quadrature, because the data points are not necessarily equally spaced.



¢) The integral

1 1
I= / / (2% + 1)y® de dy
0o Jo

can be exactly computed using Gauss quadratures with 6 integration points.

10. Perform the numerical integration of

1 1
/ / (92° 4 82%)(y* + y) dx dy
o Jo

using Simpson’s rule in each direction. Is the approximation behaving as expected?




EXERCISES 1

" ASSIGNMENT 1
1.

Eguation

Initial approximation

f(x) :x3+ 2x2+ 10x-20=0

£(x) = 3xC + 4x + 10

Function

Derivative

Value

Function

Derivative

Value

Function

Derivative

‘ f(%/iﬁ) = (3/%)3 + 2(%)2 1+ 103/20 — 20 = 41.88

¢(330) =3 3 20)2 + 43020 + 10 =42.96

xlzxo—f(xo)=320~—ﬁ'—8—8:1.74 /

£(1.74) = (1.74)° + 2(1.74) + 10-1.74 20 = 8.72

fi(1.74) =3 (1.74)2 +4-1.74 + 10 =26.04

8.72

2
X =174 - —— =141
26.04 v

£(1.41) = (1.41)° + 2(1.41)% 4 10-141 — 20 = 0.88

fi(141) = 3(1.41)2 +4-1.41 + 10=21.6

1af?
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%3 Value x =141 -—— =137
216 /
Function £(1.37) = (137)° + 2(1L37)% + 10:1.37 — 20 = 0.03
Derivative f(1.37) =3 (1_37)2 +4-1.37 + 10 =21.11
x4 Value Ho137 .28 a9 //
21.11

%(" (onv
) ?\QL

X, %q, X1 X3, X3

607 /ﬂ/\a} Ao MO

“5

The reot has been found with few iterations by using Newton's Method. The plot shows the analytical solution
and the points from Newton's Method.

5.

Assumption

a)

Minimum number of
integration points

Third-order nummerical n=1
guadratures

Interval [0.1]

[n+i=1+1=2 b/’

2af7
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b 1
Point and weights J p(z) dz = Z (W;'p (Zi))

- Yo &m'\%~ need e solvt the syt

for

p=1 1\{{0“ (on Qpng{ga Hre Q}u_g;.ci(”ﬂ»}m
p=z 4 fc,}j n (_L\J}"‘}a(l‘\ i3 l(ﬂo!w;f\}
p=z Gnd  ank He ,}vtlaw:gn d‘@‘ﬁﬁ @7{
p=2 V&A@L}%:

. 1
)6%£%+2

(4 equations and 4 unknowns)

1
p=1 J tdz =wyl+ wpl
0
1=W@+Wl
1
P=z J Zdz:WU'ZU"'Wl'Z]
0
1
E =Wy Zgt+ W21

1
2 dr = WO'(ZO)2 + WI'(ZI)2

b=
Il
N
[\®)
L'_""\

[

= Wy (Z0)2 + W]'(Z1)2

Lo-)lv—l

1
= J 2 dz=wy(z0) + wi-(ea)”
0
1
< = vz + wila)’

Solving gives the following values:
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b)
Assumption

Weights

Points )(0:—1— xlzl
4 2
xmé =1
2 4 A=
b n
| sraz=3 (oot
a .
i=0
for
p=1
p=z
2
p=z
3
p=z
(4 equations and 4 unknowns) /
_ 1
p=1 J 1dZ=W0'1+W]'1+W2'1+W3'1
: 0
1=W0+W1+W2+W3
! 1
p=z J zdz = wp— + wi-— + Wy — + wy 1
0
! W, 1+ 1+ + wa-l
—=wy— +wW— +Wy— + W
> 07 5 2 3

4 af7
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Solving gives the following values:
(W) =
1
W = —]
E
2
Wo = —
i
So it it is possible to find the corresponding weights. /
7.

Assumption

1) Trapezoidal rule

Number 1}

1
[} [ 12.xdx =6
0

1
2) [ (5-x3 + 2x) dx =225

0

1-0 1
n=32 = h=—==
2 2

Points xp =0

1

X =—

170

XZT—I

It is assumed that it is a closed quadrature.

i
J 12-xdx = 6

0

1
1= g.(f(xo) + 2:8(x))} + f(xo}) = %-(o + 26+ 12) =6

There is no error because it is a first order equation.

Safl
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1
Number 2) J (5-)(3 + 2x) dx = 2.25

0

I= %-(f(xo) + 2:(x;) + f(x0)) = %-(@ + 2'183 + 7) =2.56 -

Error

E =256-225=0.31 /

1) Simpson rule

The functions are now separated into two subintervals. A new vahue h is calculated.

n=2 = p=4z0_1
/ 4 4
1
Number 1} J 2% dx
0
Subinterval 1
| il
h 4
1= g-(f(xﬁ) + 4-£(x)) + £(xy)) = (0 +4346)=15

Subinterval 2

il
4
6+ 49412 =45

1 1= (8a) + 490) + 1(x) -

/

There is still no error because it is a first order equation.

1
Number 2) J (5-x3+ 2x) dx
0

Subinterval 1

1
1= 2 (0fa) + 1) + 1(x) =__:_.(0 AIELR _13) _a
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Subinterval 2

1
= %(f(xz) + 4-f(X3) + f(x4)) = -:—[E + 4~-23—1 + 7) -2

=225

There is no error becanse it is a third order equation. /

The errors shows that the methods are behaving as expected.

7af?
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STUDENT A EXERCISES 1

' ( ‘NUT‘A &LE} : - Homework 1

flx) =23+ 22% + 10z — 20 = 0

Compute the unique real route using Newton‘s method with 4 iterations, initial aproxima-
b .

pE WL‘né me?“!'i«m‘l Lehﬁﬂ'ﬁi b i’»"f’f’ULfiﬂ‘! 7

tion xzo = v 20. Plot the convergence grafic.

Solution:

flwg) = 2% + 227 + 10z — 20
f{zg) = 32% + 4z 410
x4 2z% + 10z — 20

Akt — _
! 342 + 4z + 10
1% dteration: o3 o
. 2 10
pot o Ta) (A 10YT_

F(o) 3(¥/20)% + 4(¥20) + 10
="+ Azl =2,7144 — 0,9748 = 1,7396
2" gteration:
flz') =1,7396% + 2. 1,7306% + 10 - 1,7396 — 20 = 0, 7708
fiz) = 3 1,7396% +4-1,7396 4 10 = 21, 5416

As? — (“"’1)) —0,3346

(!
=gl Art=1 4049/
3" gteration.

Fa2) = 1,4049° +2 .1, 40492 + 10 - 1,4049 — 20 = 0, 0079
F(9) = 3+ 1,4049% 4+ 4 . 1,4049 + 10 = 21, 1007

W2
Azt =1 (””2) ~0,0357

f{x?)
28 =a? | Az®=1,3601
4t gteration:
f(z®) =1,36913 + 2 1,3691% + 10 - 1, 3691 — 20 = 0, 0062
Fxs) =3-1,3691% + 41,3691 + 10 = 21, 0997
Aat = 4 ,(3’ ) — _0,0003

(= )

2= 2%+ Axt =1, 3688

The ezact Solutwn of the problem (obtained with Wolfram Alpha) is f (x) = 0 , forz, =

1,3688.
20 2 o P $4-'  _
values | 2,7144 | 1,7396 | 1,4049 | 1,3691 | 1,3688
I, 0,4957 | 0,2132 | 60,0257 | 3-107* 0
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2 EXERCISE 5 2

Relative eror log(Er}

L s L L L L !
1 15 2 25 3 35 4 45 5
MNumber of iteralions

2 Exercise 5

We are interested in the definition of third-order numerical quadratures in interval (0; 1)
a ) Determine the minimum number of integration points, and specify the integration points
and weights.
b)) Is it possnbie to obta.ln a thlrd—01d01 quadrature with the following four integration
points: zo = /4, 21 = [o, T2 = J4, x3 =17 If it is possible, compute the corresponding
weights; otherwise, justify why not.

Solution:

a )

The minimum number of integration points can be obtained using the Gauss-Legendre
method, as it results a quadrature of order ¢*+.

n=1-—2+1=3— 3% order

We have to apply a variable change to move the integration limits from (0; 1) to (-1; 1):

b— b 1 1 1 1 b— 1

Zaera—Ql- =|5¢t 5} F(x) =F(—z+§) = f(z); de = QGdzx §dz ;
: 1
I = [ Fla)dz = f F( ) :E

Pon %‘ f?&‘:j o %?‘ yT e

e p=1;—rwy-14+w 1= ﬁfw (2 1-1——>dzw z| =1

T =

1

oz 0 1f1 1 |1 : 12 +1
) =z 7y = — — .z — _ — — _
P 3 WaZp 1 =513 5 az iz, 44_] 2
. *ZQ'—>w22+'wz2—1f1 w1~z2+1 d il —|—1z21 -
P— 1 0~ 11_2 —1 2 2 Z_43 " _1A3_1
: 1 f1 1 124" A1 1
— .3 3 3_ * o S _ L
o p =2, — Wozy -+ U2 ZI"I(Z z+2)dz 44714— Rt




The equation system is the following:
(1) wy +wp i

(2): Wpzg + Wiz =

(3): wozd +wizf =

.-kl »—*wi s-—'Ml =

(4): wozo -+ wjzl

In order to solve the system we operate the following way:

(1% (1)--(2): bz —y) == — %

(1)¥*: (1)-22-(3): b{z? —y*) =2* — 1
(1% blz—y)  2(3% 1) -

W+ ba?—vy) 3@2-1 |Y 6x-3

y.. L . yz
(3)%: (3)-y-(4): a(z?y — 23) = % —1 (2% (2)y%-(4): a(y®z — 2°) = T
(3)x |2y —2® dy-3| 5
(4)* pr—,cf‘_ﬁy—S'
Now in a much more mmphﬁed form we can solve the equation using regular algebra, ob-
taining:

o

W | P

o ..‘wl T TE Y

0,211 1 0,789 | 0,5 [ 0,5

We can easily interpref the results:
0.211&0.789 € (0y 1)

b) B . .
Is it poqmb}e to obta.m a thnd order quadrature with the following four mtegra,tion points:
zo =" [4, T =1 [a, mp =2 /4, m3 = 17 If it is possible, compute the corresponding weights;

otherwise, justify why not.

It is not possible to integrate the function #'(z) over the interval {0; 1) using these predefined
points. The interval is (0; 1) zg =' /4, 80 it indicates an open quadrature while z3 = 1 (in the
endpoint of the interval) indicating a closed quadrature!

For a closed quadrature: /></

xy = 0,23 =1;

For an open quadrature:

zp—a+h=0+ i = 1 which is correct:

z3=b—h=1- 1= 1 which is different from 1;

Note: F(z) is only integrable over (0;1 ) if we neglect z3 = 1 or add zf, = 0

%«4 o louu_{c\ o 3.d C}(Oje/‘ &FQ_M
o i S

g{cm L} rQ{n’%’S ;
W@,\b Sfmi@ci




3 EXERCISE 7

3 Exercise 7

Compute fol 12zdz, fol 5z° + 2xdax by hand calculation using:

Solution:

We compute the exact solutions and the derivatives for the 2 integrals of f1(z) = 12z f*(x) =

hz? + 2z )
f112:cda::12$—|126
2
50 + 2wda = 55 |0+2%|;:2,25

FP ) = 0; (ﬁ?) =0
17 () = 30z; (@) =0

1. Trapezoidal rule over 2 uniform intervals

1 1 1
We split the interval (0; 1) — (D; 5) U (5, 1) h= 3

(a) f1(0)=0; f1(5)=6; f11)=12;

waof1 da:—fnf(:cd:c+ff1(£)d£— [f1(0)+2 FY )r«f(l)] \/'

There is no error since f1”(z) = 0;
(b) f2(0)=0; /X (1) = ) =7 ~

Br= -2 (ff)( )+f22)(1)) = 0.46875 1= IT T

L= Jj Pade = i PG+ f e ¢ dy o

~ g [f2(0) +2-£2(3) + ()] -

= 2.5625 - 0.46875 = X

The quadtrature obtained is 3¢ order, to numerically integrate f*(x) with good

precision,

2. Simpson‘s rule over 2 uniform intervals - we add auxiliary points at + I 4 —3 h =

We split the interval (0; 1) — (O; ;) U (%, 1) h = i
@) O =0 113) =3 /1) =6 /1) =9 /') = 12 %

I=5{/1O) +4f @) +2£1Q) + 4 Q) + ()] = w72 =[6] v
(b) 72(0) = 0; *(4) = 0,578k; FA(3) = 1,6250; £(2) = 3,6004; f2(1) = 7,
e B [200) +4£2() K2 () +47°3) + ()] = [23857) v )X

As we increased the number of points and the order of the quadtrature the results

got better.

T, =225

|
i
i
i
i
|
i
|
i
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Exevaise & U4

(‘iiQ) GrOsuns - J\QQ‘SQ\”\CE\&‘E f{g&m@ﬁ@n\\“@ :
2t d = A s nzd = 2 potet (Yo, %)

Y "
PINAT = = W) -
A=0 |

.
PlB) = — 7 Wo b+ W
Py =z —
P (1) = E° —>
Pu() = E —D

= S:Ac}% J
Wi Ee 4 Ny By = };%éi‘fi?:;
We?d + W &l = [ ztd®
We Zo? b W& = j{;”‘%%é&h{ ;

Y LeWing, M naduingar sygern ol @(,armﬁ{\h VY
Weko +\N (&, = Al P sfoo e N
Wy 25+ \w\. zl = H3

. S Zo =G 2N 2 Woz 075000
We g+ W RTEARL L 2 agsee o w0 sooe
v
Ther valiasm for We,W 7,70 cpudal el e covmpuleol
Were adceady dshounad, for Y U\\(\w ol T-u4}

on yollouay v
AN We |, W, Ze

Wez 222 W = 52 = U = 1=,

Wy = e w4 @ = dwls L= iz,

Zo=Bzogiror= o g ) S L oo,

Z. . Q&%z\';‘, ,9;.%;, - Lz % ; % L oneed,

el
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 EXERCISES 1

STUDENT 2.
(ExXCeL- ENT Y | | | 4/11/13
NUMERICAL METHODS FOR PDE
HOMEWORK 1
Exercice 1
In 1225, Leonardo of Pisa (also known as Fibonacci) was requested to solve a collection of math-

ematical problems in order to justify his fame and prestige in the court of Federico II. One of the
proposed problems can be formulated as the solution of a third degree polynomial equation

flz) =2*+22% + 102 -20=0 (1)

Note that the solution of cubic equation was extremely difficult problem in the 13#h century. Here
iterative methods are considered for the solution of equation 1.

Compute the unigue real root of 1 with 4 iteration of Newton'’s method with the initial approx-
imation z° = {/20 (which is obtained neglecting the monomials with z and x? in front of the
monomial with z*}. Plot the convergence graphic. Does Newton’s method behave as expected?
First of all it’s needed to compute the derivative of 1:

fi(x) =32% + 40 +10 =0, (2)

knowing that " = /20 and that the & + 1 approximation using Newton’s method is z*t! =
k .
=) | xk the first 4 iterations can be computed as:

ey
3 0 3 3 2 3 _ —_41 .
3(¥/20)2 + 4(¥/20) + 10 42.962
(3)
2 (1.7306)° +2(1.7396)" + 10(1.7396) ~ 20  —8.7128 B
= 3(1.7396)2 + 4(1.7396) + 10 +LT396 = Spharg T 17896 = 14080, -
(4)
s (L.4050)% + 2(1.4050)2 + 10(1.4050) — 20 —0.77156
- 4050 = ——2-220 11 4050 = 1.3692
7 3(1.4050)% + A(1.4050) + 10 HEADSY = T 7
(5)
4 (1.3692)% + 2(1.3692)% + 10(1.3692) — 20 —8.27-1073 e
- 3692 = oiloo 13602 = 1.3688.
@ 3(1.3692)% + 4(1.3692) + 10 L3602 = rgoes T
(6)

In order to plot convergence graphic, first we need to compute the residuals. For that case, since
the slop of 1 is very high, it's recommended to compute them using v* = |f(z*)}, therefore:

0 = f(V20) = 41.88, (7)
rt = £(1.7396) = 8.7128, (8)
r? = £(1.4050) = 0.77156, (9)
= £(1.3692) = 8.27 . 1073, (10)
rt = f(1.3688) = 1.17 - 104, (11)
50 the plot is: Thes 45 R‘Q}' ’}'L"if” r’g'"é, L‘w are s
ot |
{4& X km o ~ \ﬁ,f_mé__
= p - ¥ le 1
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Numerical Methods for PDE Homework 1

-
a

[} 1 2 3 4
Iteration

Figure 1: Convergence graphic of the approximation of 1.

The method behaves as expected, analyzing the convergence plot we realize that there are two
zones. At the beginning it has slower a convergence, but the last three residuals shows —as we can

expect of this method- a quadratic convergence, \'{m r e GE & mi- 3 L@w % u,,g,(;i;mk&
; Lo afall. . P

We are interested in the definition of third-order numerical quadratures in interval {0,1)

Exercice 5

1. Determine the minimum number of integration points, and specify the integration points
and weights.

2. Is it possible to obtain a third-order quadratures with the following four integration points:
wg = 1/4, 21 = 1/2, &3 = 3/4, and 23 = 17 If it is possible, compute the corresponding
weights; otherwise, justify why not.

1.

In order to get a ¢ — 3 quadrature it’s possible to use Newton-Cotes method of n = 2 (3 points),
or Gauss-Legendre method of n = 1 (2 points). So the minimum number of points needed to
obtain a third-order numerical quadrature is two by using Gauss-Legendre method.

4
In order to get the points and the weights, exact solutions for pg - - - Pant2 polyrjomials are imposed:
1
pxi—)f ldz =wel +unl =1, (12)
0
1 zZ 1 1
p=2z —>f zdz = wgzg +unzl = [—] = (13)
0 2], 2
b A1 1
p=z? —)f 22dz = woz?, —I—w1zf = I:— ==, (14)
0 3], 3
1 z4_1 1 . . K o
pzzs _>/ ZSdz:wozg_l_wizi: [* = -, (15) L
I 41, 4 Lo

g%u Cimﬁ'; f’}o?cc! ) }\ﬁ S&!&Jg
Hae MJ"‘L@?’\. Cbﬁ}%eé& ‘“HA@
%mti/&,“}’u/f e Ly, 1)

md peferm Hhe clay

}(;2

so the following nonlinear system of equations is obtained:

wy +uwp =1
Wwozp + W12 =
'wgzg + w1z2 =

wozg -+ w17 =

W [ |




M

4/11/13

o

The solutions of 17 are wg — wy — %, zg = 0.211 and z; = 0.7887. The same results can be
obtained using the general formula for & n = 1 Gauss-Legendre in the interval {(a, b):

0= b b—a a+b
I= 9 ;th (Tzi+T) B / (18)

where for that particular case: ¢ =0, b=1, w; =1, zg = \/Tg and zp = _Tﬂ

2.

Since points are given, we should use Newton-Cotes, but given points are not equally spaced in
the interval (0, 1) neither for a open Newton-Cotes nor for a closed Newton-Cotes. Therefore is
not possible to use them directly.

Notice that points zp = 1/4, 1 = 1/2 and @y = 3/4 are equally spaced in the interval (0,1} for a
n = 2 open Newton-Cotes which gives us a third-order numerical quadrature. So we can impose
wy = 0 and wp, wy and we will be the ones given by the general formula:

12 2 (2 o) — () +2/(@)) (19

where for that particular case h = %1. At the end of the day, we get that weights are: wp = %,

TL?1——_3—1’IU2=-%&HC1W3—O.\/

Exercice 7

Compute fol 12zdx, f; (52® + 2x)dz by hand calculation using

1. Trapezoidal rule over 2 uniform intervals

2. Simpson’s rule over 2 uniform intervals

Compute the error of both approximations. Are the methods behaving as expected?
1,

The general formula for Trapezoidal rule over m uniform intervals is:

=2 (f(aso) F2Y e+ f(wm)) (20)

=1

For I = fol 12zdz, h = (b— a}/m and m = 2 (2 uniform intervals), it’s known that I can be
computed as:

!
[2-(0+2:6+12)=6 v (21)

For I = f01(5:r:3 +2x)dz, h = (b—a)/m and m = 2 (2 uniform intervals), it’s known that I can be
computed as:

1 5 2

16 v/




Numerical Methods for PDE Homework 1

2.
The general formula for Simpson’s rule over m uniform intervals is:

~

wl:—‘:“

Z (f(w2imz) +4f (@2 1) + f(z2:)) (23)

For I = fol 12xdz, h = (b — a)/2m and m = 2 (2 uniform intervals), it’s known that I can be
computed as:

1
I

5O 14:3161614.9+12)=6 , ~ (24)

For I = f01(5:c3 -+ 2x)dx, h = (b— a)/2m and m = 2 (2 uniform intervals), it’s known that I can
be computed as:

0+4— +— +— +4— ~ e =1=2® 25
+ + et A+ ol e (25)

1 37 13 13 231 v 144 9
12 64 8 8 64

Now, in order to compute the errors let’s compute both integrals analytically:

1

/01 12zde = 12 [%2] ~6 (26)

0
1 CU4 1 g
fo (52° + 2z)dw = [5—4— + 1:2} =i 2.25. (27}
0

Therefore the error of 24 is 0 and the one for 25 is 0.3125. These results are the ones that we
should expect, because Trapezoidal rule is a first-order quadrature, meaning that it computes
exactly, at least, up to first-order polynomial integrals. So its normal that the first integral has
been computed exactly and the second with some error.

For the Simpson’s rule approximation, both errors are zero. This is its normal behavior, because
it’s a third-order quadrature so it can compute exactly, at least, up to third-order polynomial
integrals.




Numerical Methods for Partial Differential Equations

Ordinary Differential Equations

Starred questions (*) have to be handed in for marking.

1. The motion of a non-frictional pendulum is governed by the Ordinary Differential
Equation (ODE)

where 6 is the angular displacement, . = 1 m is the pendulum length and the gravity
acceleration is g = 9.8 m/s”.

The position and velocity at time ¢t = 1 s are known:

dé

0(1) = 0.4 rad ; —
H=0drad ;5

(1) =0rad/s

a) Solve the initial boundary value problem in the interval (0, 1) using a second-order
Runge-Kutta method to determine the initial position at ¢ = 0 s, with 2 and 4
time steps.

b) Using the approximations obtained in a), compute an approximation of the rela-
tive error in the solution computed with 2 steps.

c¢) Propose a time step h to obtain an approximation with a relative error three
orders of magnitude smaller.

2. Consider the initial value problem

d
d_i =y—2*+1 x€(0,1)
y(0) =1

a) Solve the initial value problem using the Euler method with step h = 0.25.

b) Compute the solution using the Heun method with a step h such that the com-
putational cost is equivalent to the computational cost in a).

Note that the analytical solution of the initial value problem is a second degree poly-
nomial.

¢) Compute the pure interpolation polynomial that fits the results in b).

d) Which approximation criterion do you recommend to fit the results obtained in
a)? Compute the polynomial approximation with the proposed criterion and
compare the results with the polynomial obtained in ¢).




3*. The ordinary differential equation

dy

is defined over the domain (0,1), and is to be solved numerically subject to the initial
condition y(0) = 1, where y(x) is the exact solution. The forward Euler method for
integrating the above differential equation is written as

Yipi =Y+ hf(x,Y))

where Y; denotes the discrete solution at node ¢, with position z;, of a uniform grid of
nodes of constant grid interval size h and z;,1 = x; + h.

a)
b)
c)

d)

f)

Using a Taylor series expansion, deduce the leading truncation error of the scheme.
Is the method consistent? Explain your answer.

State the backward Euler method for integrating the above differential equation
where f(x,y) is a general non-linear function of x and y.

Deduce the stability limits of the respective forward Euler method and backward
Euler method for the model equation dy/dr = —Ay where \ is a positive real
constant.

Use the backward Euler method to compute the numerical solution of the ordinary
differential equation

dy 3.5
—=Z = 25y~
dx y

with initial condition y(0) = 1, by hand for two steps with grid interval size
h =1/10. (Use 2 Newton iterations per step for this calculation.)

Use the forward Euler method to compute the numerical solution of the above
ordinary differential equation with same initial condition by hand for two steps
with grid interval size h=1/10.

The analytical solution is

1252 4+ 2\ ~2/°
y(r) = BT

Using Matlab codes, indicate the maximum stable interval size possible for forward
Euler method from the following; h=1/10, h=1/15, h=1/30, h=1/45, h=1/90.
How does your choice compare with the stability condition?

4*. The second-order ordinary differential equation

d2
ey +wly =0
dx

is defined over the domain (0, 1), and is to be solved numerically subject to the initial
conditions y(0) = 0, dy/dz(0) = w , where y(z) is the exact solution.

a)

Reduce the above second order ODE to a system of first order ODEs.



b) Set w? = 3. Using the forward Euler method to integrate the system, compute
the solution at ¢ = 1 by hand with n = 4 steps. Use the Forward Euler code to
check your results.

c¢) Using the Matlab code, compute the solution using n = 8 steps. Use these solution
values to estimate the step size required to obtain a numerical solution with three
significative digits. Try your new step size.




EXERCISES 2
STUDENT 4

(APROVAT)
| PDE \ o 1
'ASSIGNMENT 2 .
3.
a.
2 g2
Taylor series Y =Y+ h-d—Y(xi) + —d—zY(xi) +
L+ dx 2 dx
- Forward Euler Y, -=Yi+ h-f(xi,Yi)
d h” g2
Truncation error Y; + h‘mY(xi) + ———2Y(xi) + o =Y, + h'f(xi,Yi)
dx 2 d4x
J‘L s
d h g
h=Y(x) + ——Y(x;) + .. = hf(x,Y;)
e, dx dx
Vi
& ,
2 9
d h™ g
hl —Ylx flx. Y| =——Y{x) +
(210 -1l )| - L)
4
2
d h d
=Y(x) - f{x,Yi) | = = S5 (x) + o
dx 2 ax
If the the solution is exact i-Y(xi) - f(x-l,Y;) =0
dx
7 h ¢ : . . .
Vi Then —2—-——2Y(xi) + o is the error. The method is consistent because by decreasing
dx
h the error will also be decreased.
Backward Euler v Yo=Y+ hf(x, LY, ) k’>
The Backward Euler is a non-linear equation, because both sides depend on Y, |
i “{) R P ey
The letters denotes the same as in the forward Euler.

| of £0
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C.

Assumption

Stability-forward Euler

Y

d—y =f{x,y) =-N\y and x>0
dx

Y

1+i

Y, .= Y+ he(x,Y)

¥

Y, =Yi-hX\Y,

Y, .= -hNY,

Y.

L

Yi=(1 -hNY,

Yl-i

Y, =1 =hNY;,

1+i

Y, o= (1 =hN (1 =hNY,
U

Y., .= (1= b2 - N =N,

Y.

Y = (1 - hNY

To find the stability conditions for the forward Euler, the following exact solution is
used:

v = e

where —y = -hy=-he X
X

2 of 10 J
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Stability-backward Euler

-
H
¥(x) \\
0 5 10
— ["
X
Yi— 0 tor i =

For the numerical solution to forfill the exact solution, the following requirements fo
h must be fulfilled.

[1-nx <1 = 0<hx<2

or
2
O<h<— ’\u/
‘ bN
Y1+i
Y= Yi‘ + hef(x, WY, )
Y. =Y -hdY,,
4
Yi=(L+hNY, |
. g/[ a\\
- Y, L)
TSR -

1 i
[l
(1+hXN

The same exact solution is used in this case.

Y- 0 for i > x

1 - . 1
] = no stability conditions \w’/

<<
1 +hx
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d.
: d 15
Assumption d_y =f(x,y) = ~25y
X
Initial condition y(0) =1
. 1
Mesh size h = —
10
Solving Y., =Y+ hf(x, .Y, )}

"H(z) = -7 - h'(—25y3'5) +2

Reformulating the equation to

FY)=0
3
F(Y)=0=-Y; - hf(x, .Y, )+ Y,

4

i+1

Newtons Method

Ziplusl — Zk =~
F(Zk)
Y0+1
First iteration
k=0 = 2g=Yyz0=Y0) =1
25
Fzg) =z -1+ ?—3-13‘5 —1-t+ %-13‘5 =25
35 2. 35 2.

Flzg) = 1 + —Z-zw S14 =12 2975

Hzg 2.5
7) =12 - ( ) Sl e 074

F{zo) 9.75
2y =Y

4of 10




Second iteration

k=1

25 3. 25 :
Flz)=2-1+227" 2074 - 1 + 2.074°7 = 061
10 10

35 3
Flz) =1+ 222 14 20?5 w502
4 4
F 4
Ly =7) — ( )=074—G_'61=0.62
F{z,) 5.12
Z=Yip=Y;
Y1+1

First iteration

k=0 = 2g=Y, =062
25
F(0.62) = 0.62 — 0.62 + 76-0.623'5 =047

' 35
FL062) = 1 + :-0.622'5 ~ 365

F
2 =70 - (29 062 - 3 49
F/(z) 3.65

Z1 =Yy,

Second iteration

k=1

25
F(049) = 049 — 0.62 + 5-0.493'5 ~008

35
F(049) = | + ?-0.492'5 — 247

0.08
7y =049 - —— = 046
247

Z3=1Y,

L
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. d 3.5

Assumplion —y =f(x,y} = ~25y
dx
Initial condition w0 =1

. 1
Mesh size h o= —
10
Forward Euler il

Y, = Yi+hf(x,Y)

L

Y0+ 1

Value

Y o= Y!'D + h‘f(XO,Yo)

0

4
Y .-l +.%-(—25-13'5) - -%

Y1+1
Value

Y, =Y+ hi(x,Y))
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Matlab

" Exact solution

2

(x) = 125 x+ 2
= —2

The green line denotes the exact solution and the biue line the solution from using
Forward Euler in Matlab.

7of 10
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h=—
30
1
h=-—
45 !
1
h=—
90
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Stability condition

Ko

%

Assumption

First order system

b.

Assumption

Using the general expression for the stability con. ... .0 - . ... ..
-2 <hX<{

-2 < %-—25 <0t = -2 <-25<0 Not stabil
—2<1i5-—25<0 = -2 <167 <0 Stabil

C . . . 1
And then the rest should be stabil, Matlab is giving warnings until using h = e S0

maybe it is wrong to use, that stability condition, because it does also look unstabil at

i
the plots, but only until using h = —. o
p y g 20 (( D
2

d—zy + wz-y =0

dx :

Initial condition ¥0) =0
d
—y(0) =w
dxy

“y(x) is the exact solution

Yay-=Y Y=Y =Y @

o 2 9

Yo=Y y@.:y —w y__w"y(i}

Vectors

. [ L[ . J
d 0

7 5 (-

y( ) dx wZ_y(l) W

The vectors denotes the first order system.
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Forward Euler

Matlab check

%\) L B 2
§

i+1

Y., . =Y + hf(x,Y)

Y,

v Tonier)
el 8

Y,

— — —
Y2 = Y] + h'f(xl,Y])

- 043 1 1.73 086
Y2 = 4 — P
1.73 4\ -3-043 141

Y, P
Lo - (]
Y=Y, + h-f(xz,Yz)
—  [foseY 1 { 14l 121
Y'; = + —- =

: 141, 4 \-3:086 076
Y4

— — —_—
Y4 = Y3 + h'f(X:;,YB)
- 121 1 0.76 14
Y4 = + — =
0.76 4\ -3-121 -0.15
The above results and the results from Matlab are the same.
O 90,4330 0.84680 1L,E178

1.7321 1.7321% 1.4073 0.7578

~-{3.1556
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o Step size=1/15

Step size = 1/30 Step size = 1/45

Step size = 1/90

For the generalized formula (from the notes) we
have the following

i, T _2
O<hi< 2 = 0<h< A
In our case we have:

_2
G<h< ‘95
|}

0<h<%2’5

O
Forh=AO: 0<%0<%2,5 Unstable N

Forh=%5: O<%5<%2’5 Stable ‘:»("\

With stepsize 1/15 the euler varies from the exact solution, though it is stable.
The smaller stepsize, the more exact solution.
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klear all; close all; clc

:.:Elinsgaceﬁﬁ,i,méli
v & zeros{siza{x})

lambda # -25

h o= 1/m;
¥{i) = %j;
for itm

y_i= y{i)
f i = lawmbda®*y_i."3.5
y{i%1) # y _ish=f §

®_ex = Iinspacs{d,1)
vy ex = [{125%x mxdd)7/2).7 (=275}

plotix,y, =" & _eX,y_ex)
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Matlab script

- klear all; close all; cle

i
4
3 - m o 4
4 - % #® Linspace{d,i m+¢l}
8 - vl & zercs{size{x))
& - y2 # zeros{size{x))
T
Vg - Bo= 1/m:
9 - Fi{ilj = b
1o - y2{1) = sgrk{d)
1X
12 - pfor 1= lmm
13 - y_i3 m yli[i)
4 - v 32 = yw2(i)
15 - f 31w y_i2
16 - F A2 @ {~3)*y_i1
17 - yifieiy = y 11+hsE i1
ig - y2iiely m y_iZensf 12
19 - . omnd
249
21
2% - plot{®,yls *= ;5,52 %"}
33 - titie{'yi = blue line, ¥& » green iine '}
24
Matlab plot

Values computed by matiab

"
i
ot
1

a 04,4330 0.24a80 1.2178 1.4073

v

Ve

1.732% 1.7321 1.4073 0.%5%8 -&,155%

The soultions from the forward euler matlab code is exactly the same as calculated by hand!

d}c\) AL S Lk
%




STUDENT A EXERCISES 2

* (MC&TQ E:L,Ej | Homework 2 i

The ordinary differential equation

d
5 = flz,y)

is defined over the domain (0,1}, and is to be solved numerically subject to the initial

condition ¢{0) = 1, where y(x) is the exact solution. The forward Euler method for 1ntegratmg
the above dlffelential equation is written as:

Yip1 =Y+ hf(z, Y3)

where ¥; denotes the discrete solution at node %, with position z;, of a uniform grid of nodes

of constant grid interval size b and z;1 = i + k.

a)

b)

c)

d)

Using a Taylor series expansion, deduce the leading truncation error of the scheme Is the
method congigtent? Explain your answer. é

State the backward Euler method for integrating the above differential equatlon where
f(z;y) is a general non—hneal function of & and y. !

Deduce the stability lnmts of the respective forward Euler method and back\a:iard Euler
method for the model equation dy/dz = — Ay where A is a positive real constant;.

Use the backward Euler method to compute the numerical solution of the ordmary differ-
ential equation

gﬁ = 2530 !

with initial condition 4(0) = 1, by hand for two steps with grid interval size b = 1 /10. {Use
2 Newton iterations per step f01 this calculation.)

Use the forward Euler method to compute the numerical solution of the above ordinary
differential equation with same initial condition by hand for two steps with grid mtelval gize
h = 1/10. i

The analytical solution is

125z + 2\ ~%/°
y(x) = —

Using Matlab codes, indicate the maximum stable interval size possible for for\;va.rd Euler
method from the following; h=1/10, h=1/15, h=1/30, h=1/45, h=1/90. How does your
choice compare with the stability condition?
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Homework 2 2

Solution

)

b)

W/

d)

Yirl = i + h (a:ﬁ) +O(R*) — Yoy = Vi + hf(5:,Y5)

The truncatlon error is:

O{h?) = O(R;(h)) = O(mhTi{h)) = O (%h?}(ia)) = O(T:(h))
where Ri(h) = yig1 — v — hf(zi, w) = hT(h) p

Also: Ri(h) = Oty = O(h?) — g =1 2

T e L L B

1 A ¢
lim O (w) = () v consistent T l\ﬂin“} OQ \}
m—co . \ 1M

dx dw

y :
P f( 4 {yu;} {ii_a _ dL(l)_}; %DJ@H = [{®ir1, Yiv1)

d dy
Y = yz‘+1 — h-~ 1y (zip1) + O — h ($z+1) Yir1 = Ui

i i O(h L
Haserspin) = Loty O _ y*lh FETR) — wesa = (@i, ve) 3~ KTO)

Neglecting the truncationg error 7;(h) we obtain:

1.-4-1 hf(»’-'?zﬂu%ﬂ) + Y v

Forward Euler Method:
dy

=-Ay; A€ R+
y(0) = 1 \
Yier =Y+ hf(Zi,4i41) = Y5 — BAY: = V{1 — hA)
Y=Y ((1-hA);Yi1=Yia(l—h)\); — Y =Yio(1 = hA)(1 — b)) = Vi o(1 — hA)?
We can write the following:
Y= Yo il — A = Yo(l — hAY

where 1 — hA is the amplification factor. For the solution to be stable the following must
hold:

I1—hA <1
—2< —hA<0—|[0<h< |V

Backward Euler Method:

: Y; Y, -1 Y o
1= —hAYip Y, = Vi = Vin(l+hd) — Y = ——— Y= ——— Yo = ——;
Yiri hifin i A) | + hA 1+ A 17 + hA
. Yi2 Yii Yu
write: Yy = m———g — ¥i = 57— i T
We can write: Y] NN ¥ (L hA) —3 Y NN

where 1/{1 -+ hA) is the amplification factor. For the solution to be stable:

‘ T )\’ < 1 which is true for any hA > 0 so

| h>0A>0]|v

Yier = Yi + hf (@i, Yorr); b= 1/10; y(0) = 1;
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o

- Homework 2

Step 1. V1 =Y, — f—oszf-ﬁ
F(V1) = Y+ 25YP5 — 1; f(¥y) = 8.75Y25 41,

Newton iterations:

Lfi0)=~1; (O =1 AY] =L, Y2 =Y+ AY} =0+1=1 :
2. f(1) =05; f'(1) = 9.75; AY? = ~0.051; Y7 = Y + AY{ = | — 0.051 = 0.949

1 -
Step 2. Yy — Y7 — 1625133/5;
f(Y2) = Y5 + 25Y5° — 0.949; f/(Y,) = 8.75Y2P + 1;
Newton iterations:
1. f(0.949) = 3.03; f(0.949) = 8.676; AY21 = —0.349;
Y2 =10.949 — 0.349 = 0.6
2. f(0.6) =0.069; f'(0.6) = 3.440; AY22 = —0.02;
Y3 = 0.6 —-0.02 = 0.58

€) Yipa = Yi+hf (2, Yi); flwi; Vi) = —25Y5; h = 1/10;

PR o) aadd {\} ! g

s e |
vm:'f‘»-r\,wc;kﬁ:,,L Xm’;;c}

et

1 . . PR I T 1@&‘
Step 1. }/1:1’;]4-%(“25030):1 7 T(A;z, iw.gliﬁig_ £ A ;«%“'1

1 = N3 \T’{O\} = /'g"" i
Step 2. Y2=Y1+56 (—25-1*°) =1-25=—15 :

) We compute the Forward Euler Method for a range of steps b = [1/10,1/15,1/30, 1/45,1/90).
All the results are plotted on a same graph, together with the exact solution.

Stahility domains

08 'E

=
m

F.E. Approximations
Exact soiution fx)
o
E-N

I
—h=1/10
—h=1As
—h=1fA0 H
—h=1/45
——h=1/80
—-Exact Solution - 90 points H

o
b

04, 0.4 0.5 05

x

07

0.8 ;09 1

We can observe this method is not stable for step of h = 1/10. Also steps h =1 /15 and

h = 1/30 do not provide good approximations.

RN
L4} {,'\.M s C&&-«kﬁnfﬂgﬁi ol .

0



/(_g : E:c)mf(da yv); z €{0,1)
\Q) v(a) = a

E':Tome‘i-vcu"k 2 4

Exercise 4%*

The second-order ordinary differential equation

d?y
d2+wy*0
1s defined over the domain (0,1), and is to be solved numerically subject to the initial
conditions y{0) = 0, dy/dz(0) = w, where y(z) is the exact solution.

a) Reduce the above second order ODE to a system of first order ODEs.

b) Set w?!= 3. Using the forward Euler method to integrate the system, compute the solution
at t = 1 by hand with n = 4 steps. Use the Forward Euler code to check your results.

¢) Using the Matlab code, compute the solution using n == 8 steps. Use these solution values to
esnmatc the step size required to obtain a numerical solution with three significative digits.
Try your new step size.

Solution

a) Given :the equation y" + w? = 0 we identify the following;:

Py { Yu } {’Ul (0) =«

— ; — f ) ~ ( } o ;
T2 = J Mﬁ’? v )¢ Lv(0) =
The System of first-order ODE is the following:

dy

=

b} Apply the Forward Euler method with the following conditions: w? = 3, n =4 steps, t = 1;

\ 12 17 G e b= )
vector of nodes: x = [O,—,—,l} n=t = kK T;;

3°3

St 2.Y Y+1 ! v
cp 2—1§ 3,1 22—

1./2 Y? 1[+/3 = 3
s Vo Va1 (5 2) = [5a] = e o ] o[
3




(g}

~ Homework 2

Calucalted values
Y1 | 0577 | 1154 | 1.731 | 2.309
Yy 1 1.732 | 1.155 0 -1.732
Matlab values . —
Y, 0577 [ 1154 [ 1731 [ 2800 | cmees tu 1o plassiiotion
Yo | 1.732 | 1.165 0 -1.732

S ¢) We can observe the convergence of the approximations by the increase of the number of
i | steps 7. ‘

2 T T T T T T T T T
15} S
; 1F
E
| 0.5}
| =
= o
. D5}
i
5 —— =8
; 15} n=64
n=512
_2 1 1 i 1 ] 1 I i |
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% Porward Buler Method for s 2nd ODB
clear all; close ally olc

=g 3
h = 1/m;

linspace{0,1,m+1});

I

x

for i=limtl
ul{i} = 03
snd
ul{i) = 0;
For i=l:mtl
u2{iy = 0;
andg
wZily = 3*{172}s
for L o= lim
ul{i+ly = ul{i) + h*a2{i};
u2(i+l} = u2(iy 4 hr(=3y*ul(i);
and :
ul{m+l}

plot{x,ul, ")




8 povward Puler Method for a Znd DDE with tolsyranes

elear ail; close ali; cole
erroar = 1;
ml = 23

while srror —= 0
mi = 2%mls
nl = 1/mi;

for i=limi+l
ulm(iy = Oy

e

ulmf{i} = 03

For i=l:ml+l
w2m{i} = 03

apel

uzm{l)y = 3°(1/2);

for i o= lzml
ulm{i+1l) = Gilmiiy + hl*uZm{i}s
aZm{i+l) = v2m{i) + hi*{~3)y*alm{i};

and
m2 = 2%mi;
h2 = L/m2;

for i=lmmZ+l

pim2{i) = 0;
and e
uilm2 {1y = O;

for i=lim2+l

u2m2 (i) = 03
and
wzmZ (1) = 3~{1/2);

for i = limZ
wim2{i+l) = uilmZ{i) + h2»ulm2{i);
u2m2{i+l) = ulm2{i} + h2e{-3y*uimi{i};
and

error = abs(fix{ulmiml+l}*1000} ~ Fim{ulmZ{m2+1)*1000));
and

wlm{ml+1}
mi

x = lingpace{t,l,mi+tl};

ploti{x.ulm,’ . ")
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EXERCISES 2

STUDENT 2

NUMERICAL METHODS FOR PDEs

HOMEWORK 2
Exercise 3
The ordinary differential equation
% = f(z, y)

is

defined over the domain (0,1}, and is to be solved numerically subject to the initial condition

y{0} = 1, where y(z) is the exact solution. The forward Euler method for integrating the above
differential equation is written as

Yit1 = Yo+ hf(z, Y0)

where Y; denotes the discrete solution at node ¢, with position 2;, of a uniform grid of nodes of
constant grid interval size A and x;11 = x; + A.

a)

a) Using a Taylor series expansion, deduce the leading truncation error of the scheme. Is the
method consistent? Explain your answer.

b) State the backward Euler method for integrating the above differential equation where f(z,y)
is a general non-linear function of z and y.

¢) Deduce the stability limits of the respective forward Euler method and backward Euler
method for the model equation dy/dz = —Xy where X ig a positive real constant. '

d) Use the backward Euler method to compute the numerical solution of the ordinary differential
equation
dy a5
L= a5y
da Y

with initial condition y(0) = 1, by hand for two steps with grid interval size h = 1/10. (Use
2 Newton iterations per step for this calculation.)

e} Use the forward Euler method to compute the numerical solution of the above ordinary
differential equation with same initial condition by hand for two steps with grid interval size
h=1/10.

f) The analytical solution is

125 + 2\ ~%/5
y@) ={ —5—

Using Matlab codes, indicate the maximum stable interval size possible for forward Euler
method from the following; b = 1/10, A = 1/15, h = 1/30, h = 1/45, h = 1/90. How does
your choice compare with the stability condition?

Taylor series expansion is:

d
Yit1 = ¥+ hay(wi) + O(h?),

1

i

i
;

I

{

25
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Numerical Methods for PDEs Homework 2

therefore the derivative can be expressed as:

o .
@(.'L"s) L h@(h,2) . (7 v“b““ ‘

da; h '-,—/ v
Ti(R)

Finally, it can be said that the method is consistent, because the truncation error is a function of
h, so when h tends to 0 7 also tends to 0.

b)
Backward Euler can be deduced in a way similar to the forward Euler:

d:
Yitl = Yi — h&‘z‘(ﬂﬁl) + O(K?)

dy Yiti — Vi 2
— (1) = =—= + hCH{AK").
dﬂ: (xiv'l‘l) h + ( )
T"(h)
Therefore, the approximation can be written as:
Yiei — Y
h

Yir1 =Yi+ hf(ziga, Yig1)

flwig1,Yig1) =

c)

First of all notice that the analytical solution for the model equation is ¥ = Ae™*® where A is a
real constant. For forward Euler the ¢** approximation can be expressed as:

Y; = (1 - Mh)Y,.

As the analytical expression tends to 0 when z tends to infinity the approximation must tend to
0 when ¢ tend to infinity, so it means that:

|1 — ARl <1= Mh <2,
and since i and X are positive reals the solution will be stable when:

O< <2

For backward Euler the #** approximation can be expressed as:

1 [
Yi={——) %.
(1+Ah) 0

Imposing the same criteria as before and taking into account that h and X are positive reals,

()

will be always smaller than 1, so backward Euler is unconditional stable —is stable for any h > 0-




12/11/13

d)
Particularizing backward Euler method:
1
Yipp =Y+ 15("251’;:'1?)
The first step is: 1 o5

Applying two steps of Newton’s method with ¥)? = 1, the approximation becomes:

—g(¥1) -2.5
yi—_—9h L +1=10.7436
i g!(Yl) 1 1+ 251~3.5
9 ~0.7436 + 2.5 - 0.7436%5 — 1 —0.62994 o
Y]_ = = 1 + 25.3.5.0.7436% 5 "1" 0.74:36 = W “‘l“ 0.7436 —_— 0.6218
10 .
Therefore, ¥; = 0.6218, second step of backward Euler is: {Z

1 25
Yo = Y1+ 55(-26Y5%) = Yy ok V50 — Y1 =0

Applying two steps of Newton’s method with ¥;Y = 0.5, the approximation becomes:

—0.5+2.5-0.5%% —0.6218 —0.09917
1 __ _
1 T BisoEs +05= s+ 0.5 = 0.4611
—0.4611 +2.5-0.4611%> — 0.6218 5.727-1073 A
2 —
Yi=— 7 BmEsomE + 0.4611 = o033 +0.4611 = 0.4586 _
Therefore, Yo = 0.4586.

e)
The forward Buler ¢ + 1 approximation is ¥;y; = ¥; + hf(z;, Y3), therefore Y7 and ¥ are:

1
=1+ 0(“25-13'5)ﬁ1-2.5=—1.5 @

10

Ya = —15 4 (=25 - (=1.5)*%) = 1.5+ %(—25- (V=15)"")

10 ‘
As it can be seen it’s impossible to compute Y5 with real numbers, that’s because forward Euler ““/
is unstable for this step size.
f)
Using Matlab code the maximum stable interval size possible is A = 1/30. Using the condition S \

obtained from the model equation using & = 1/15 would be enough, but it's not because of the -
fact that y is elevated to the power 3.5. The stability condition for the model equation says that . %,fzﬁ o
M < 2, but in this case ¢ to the power 3.5 not to the power 1 as it is at model equation. BT

Exercise 4

The second-order ordinary differential equation

Py

dx
is defined over the domain {0,1), and is to be solved numerically subject to the initial conditions
y(0) = 0, dy/dx(0) = w , where y(z) is the exact solution.

+w2y:0




J

Numerical Methods for PDEs , o : L Homework 2

a) Reduce the above second order ODE to a system of first order ODEs.
b) Set w? = 3. Using the forward Euler method to integrate the system, compute the solution
at t == 1 by hand with n = 4 steps. Use the Forward Euler code to check your results.

¢} Using the Matlab code, compute the solution using n = 8 steps. Use these solution values to
estimate the step size required to obtain a numerical solution with three significant digits.
Try your new step size.

a)
Setting g1 ==y, and ya = j—g, is possible to write that: KB
dyz + w2y_1 =0 A
’yl
e — Y2
11(0) =0 \/
yg(O) =W
b)
The system of equations asked to solve is:
Dz = _3y,
i
y2(0) = /3
Applying forward Euler: _ . _
{ Vit Vi + by
Yt = ¥§ 4+ h(-3Y¥})
For 4 = 0: -
Yl= Y04V =0+ 1vE= up
Vi = Y9+ h(-3Y9) — V3~ 1(=3-0) = V3
Fori=1:
{ v =413
Y=v3-L(-3L) =13
Fori=2:
= = 8
Y3 =15 i6 3_3(_ T)zﬁﬁ
For ¢ = 3:
{ Y4_45\F+}u76\/'m— 3 = 1.4073 Vi
4 45 —23
Vi = 3(—383) =323 =-0.1536

Finally get that at £ = 1 the approximation of y is 1.4073, and the approximation of the derivative
iz -0.1556.

c)

The approximation using n = 8 of ¥ is 1.1902, and the approximation of the derivative is -0.2798.
Three significant digits means that the first three nonzero digit of the approximation must be equal
to the first three nonzero digits of the analytical solution. For this particular case the analytical
solution is y{x) = sin /37 and for z = 1 it values 0.9870. The first approximation that gives this
3 significant digits is when n = 1523 and the approximated value is 0.987999.

(1

B

-




Numerical Methods for Partial Differential Equations

Finite Differences

Starred questions (*) have to be handed in for marking.

1. Consider a bar with length 1 m and constant thermal conductivity k. The temperature
at the ends of the bar is

T0)=0, T(1)=1. (1)
In order to determine the temperature distribution on the bar, the heat equation is
stated 2T

with boundary conditions (1).

a) Derive a numerical scheme for the solution of the boundary problem given by
equations (2) and (1) using a centered approximation of order Az?. Detail the
linear system obtained for Az = 0.2.

b) Solve the linear system obtained in a) for a bar with constant thermal conductivity
k = 1. Represent the solution. With no extra computations, justify how would
the temperature distribution for a bar be with conductivity k£ = 10.

c¢) Solve the linear system of equations with the Gauss-Seidel method and the Con-
jugate Gradient method. Compute 4 iterations with initial approximation x; = 1,
and comment the convergence of both methods.

2.*% Let us consider the differential equation
u+au, =0, z€(0,1), t>0, a>0 (3)
with initial condition
u(z,0) = sin(27x),

and periodic boundary conditions, that is
uw(0,t) = u(l,1).

a) Propose an implicit finite difference scheme, with first order in time and space, for
the discretization of 3. Justify the selection of the approximation for the spatial
derivative.

b) How are periodic boundary conditions treated? Write in detail the system of
equations to solve in each time step.

c) Suggest a direct method and an iterative method for the solution of the linear
systems of equations.

d) Draw schematically the fill-in of the matrix for the direct method proposed in the
previous section.




3. Consider the elliptic equation
Pu  u
— 4 — = f
ox?  Oy?
with homogeneous Dirichlet boundary conditions (i.e w = 0 at the whole boundary)
and source term f(z,y) = 2(x? + y?).

a) Solve the problem in a square domain [0,4] x [0,4] with Az = Ay = 1, and
determine the temperature at the point (z,y) = (1, 1).

b) Solve the problem in the triangle defined by vertices (0,0), (0,4) and (4,0), with
Az = Ay = 1, and determine the temperature at the point (z,y) = (1,1).

c¢) Using the initial approximation U = 0, compute 4 iterations for the solution of the
system obtained in b) with the Jacobi and Gauss-Seidel methods, and comment
the results.

4.* For the numerical modelling of a new technique of contamination control, it is inter-
esting to solve the diffusion-reaction PDE

Ut = Vg +ou  inze(0,1),¢>0 (4)
with boundary conditions
w(0,t) =0 and wu,(1,t) =0 (5)
and the initial condition

0 for z<1/4
dr—1 for 1/4<z<1/2 (6)
—4rx+3 for 1/2<x<3/4
0 for 3/4<z

u(z,0) =

In the PDE (4), v > 0 is the diffusion coefficient and o < 0 is the reaction coefficient.
Both coefficients can be considered constant.

a) Propose an explicit finite difference scheme for the solution of the PDE (4) with
boundary conditions (5) and initial condition (6). Detail the numerical treatment
of boundary conditions.

b) Which scheme is obtained for ¢ = 0 (diffusion equation)? And for v = 0 (reaction
equation)?

c) Take v = 0.1, 0 = —0.1, Az = 0.25 and At = 0.1, and compute two time
steps with the explicit scheme proposed in section a. Are the obtained results
reasonable? Discuss with the help of the graphic of the profile of u.

d) Propose an implicit finite difference scheme to solve the PDE (4) with boundary
conditions (5) and initial condition (6). Detail how are boundary conditions
treated, the structure of the matrix and the most suitable method to solve the
linear system of equations.




5. The following finite differences schemes
(i) U =0 _5( i+1 ifl)

(ii) Uin+1 =U"—-c (Uin - z‘n—l)

(7)

with Courant number ¢ = aAt/Azx, are considered for the solution of the boundary
problem
u +au, =0, x€(0,4), t>0, a>0

U(SL’, 0) = UO(I), U(O, t) =0. (8)

A method

! C=0.8 |
7\
205 b
"I\
o b .
1.5
[ T 1
TR
IJ ‘ F
o EE S
15

Figure 1: Numerical results with methods A and B

a) Discuss for each method wether it is an explicit or implicit method and indicate
the truncation order. Which linear solver would you use in each case?

b) Figure 1 shows the solution with methods A and B for Courant numbers ¢ = 0.8
and ¢ = 2. Decide reasonably which of the schemes (i) and (%i) correspond to
methods A and B.

¢) Comment the stability of both methods. Do the numerical results correspond to
the expected behavior?

6.* The partial differential equation
ou  %u
ot Ox?
is defined over the domain 0 < x < 1, and is to be solved numerically subject to the
boundary conditions u(0,¢) = 0.0, w(1,¢) = 0.0 and initial conditions u(z,0) = u(z)
(uo(x) defined below), where u(x,t) is the exact solution.

The explicit forward time centred space scheme is used in the form

Uttt = U = (U - 207 + UR)

where r = bAt/Az? | subscript 7 is a spatial index (x-direction) and superscript n is
the time level.

a) Using a Taylor series expansion, deduce the leading truncation error of the scheme
and state if the scheme is consistent.



b)

f)
9)

A uniform grid with three interior nodes and four equally spaced intervals is used.
The initial data ug(z) is defined by

u! =0.0, uy=30, wud=6.0 uj=30 ul=0.0,
and b = 1/4, At = 0.25. Compute the solution at the 3 interior nodes after one
time step. Sketch the solution. Is the scheme stable in this case? Explain.
State the stability condition.

State the implicit backward time centered space scheme for the above problem.

Using the above data, write down the resulting system of equations (expressed in
terms of general r) that must be solved in order to compute the solution at the 3
interior nodes after one time step.

Determine the solution via Gaussian elimination.

Will the method always be stable or is there a limitation on time step?

7.% Consider the following system of linear equations:

@)
b)

10 4 0 |=1 46
6 12 3| [z2]| = |81
0 5 9| |z 65

Using initial data x° = [2,3,4]T, apply Jacobi method to the system for 3 itera-
tions. Show your working and the results of each iteration.

Using the same initial data, apply the Gauss-Seidel iterative method for the same
3x3 system for 3 iterations. Again, show your working and the results for each
iteration.

The exact solution of the system is x* = [3, 4, 5]T. Determine which method gives
the best result and explain why.

8.*% Consider the following system of linear equations:

9
b)

I 5 ||z |17

5 100| |xzo|  [310
As a first attempt, we have tried to solve the system using the steepest descent
method, but convergence is too slow. Explain the causes of this slow convergence.

Can the conjugate gradient method be used to solve the system? Will it converge?
If so, how many iterations are needed?

Compute two iterations of the conjugate gradient method applied to this system,
using x° = [5,5]7 as a starting vector. Which will be the results if a different
starting vector is considered?
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Universitat Politecnica
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PDE
EXERCISES 3

4.
Assumptions

a.

Scheme

Oy = Wiy + Ol

inx €{0,1),t>0

Universitat Politecnica

v>0
<0
Boundary conditions
uDty=g=90
U1, =h=0
Initial conditions
1
ufx,0) =0 for X<—
4
1 !
(K, 0) =dx -1 for —=X<=
4 2
u(x,0) =-4dx+3 for menw.
2 4
3
u(x,0) =0 for M X

The explicit method is the Forward in Time Centered in Space (FTCS) i

The boundary conditions is a combination of Dirichlet and Neuman. The value in

note M+1 is therefor unknown but it is a nesserary assumption for being able to

n+1
M1

value in the end point and is obtained by making a fictious node i = m + 1.

solve the equation for all notes. The equation U (se the following) gives the

The equation is imposed in mﬁ;@

Derivatives

De Catalunya
Barcelonatech
Solution for next time step
U =vly+ ol
4
C__fl - Cmn
a0
4
A N TR R R Lt
i-1 i+l
Cc.._i" - Mu: -0
+1 n b]
" g = 20U+ (1 - E.cas: 4+ 2rAxh® + oary”
=0 for
Cmo =dx -1 for
0
U =4x+3 for
for
Where oAt
3
A
b.

Solution for next time step

U =1Ug
4

UM U e (- 2000 T

+0..DTC_.=

1

M+1

P= M

1ol 7

2007
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Reaction

vt sl e -t 2e A"

=0 for
i =4x-1 for
0
U =—4x+3 for
C,o =0 for
where r= .!:ibﬂ
2
A
U =cu

Solution for next timestep

Uy=aU
4
C_ni _ E: n
= o
At
1
U™ s eacy® s Ut

i=M+1

The equation car be solved only in terms of the initial condition.

C._o =0 for

wl o ax—1 for
4]

U =—4x+3 for

Cmo =0 for

[

Assumptions

Initial conditions notes

Solutionine=0

v=1{01
g=-01
Ax = 025
At = 0.1
revB o < X = Stabel
2 2
AX
U 0
0 1 4}
0
4— -1
U 4x -1 4 0
0| = =
U = ~4x+3 | = L_.;w 3 1
0 0 2 1}
Us 0 0 0
v 0
IR 1 7
C.D 4
! 20+ 1= 2007 + 10,0 ¢ Aot
u! = rulra-2ut s s s e’
U, rUC + (1 =200, + rU” + Atety]
F.H _.wq.:mc +(1- Na.c#o +2rAxh” + Q.DH.C»Q
I
U
1 0 o
0 O+ (1 -29-0+ 1 + AtgD 0.16
Gl {=| T0+(l-201+004+ Avel =] 067
1 rl+{1-2000+r0+ Atg0 0.16
Us 20 + (1 = 209-0 + 2rAx0 + o A0 0
u!
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Solutioninn=}

“Plot U

i ..mmw.man

m‘cw Livhad
J

e
Ug & g
i 1 1 1
U rUp + (1 =200 + Uz + Atol)
.1 1 1 1
U, 1= Uy +(1-201 +rU; + Atgl,

us Py (1= 20U & P+ AverTy!

ul] l2rud s -200) s 20 Axn! s oac T

(]

Yo
o ]
r0+ (1 -20-0.16 + 0067 + Ata 016 0.21
Uy = r016 - (1 = 203067 + r-0.16 + At-g-067 | =| 05
r0.67 + (1 - 21)-0.16 + r0 + At-0:0.16 021
2r-0.16 + (1 = 2r)'0 + 2r-Ax0 + o-At0 0.03

(&)

U

[

(8]

Us

L=

Uy

b
sl

R

«The plot shows that the fuction is stable, which was expected. There is no source
term in the PDE, which means that the function must go towards a straight line,
when t goes to infinity and with a discretization that satisfies the stability condition.
This is true for the result.

The implicit methoé used is Backward in Time Centered in Space (BTCS).

The equation is imposed in ?L? Q

Derivatives nel LR

n+1 Us - Ui
b At
. oo+l n+1 n+l
n+1 ACTL -2 * hﬂwiv
Uxxi ~
AX
Solution for next time step
U=wlUy+ U
4
1 41 n+l
u N2yt (U
nvA i L - h _iv + Q.szi
AxT
4
Q: + q.b:.c..: = IACILEH # (1 + N_.vcmsi - AC.:.L:.Z
4
n .oan+l - n+l n+l
U= A?ZV +(L+2r+ cAOGT - Ac:_v P=1,m M
dc_.z._ nm_._i =0 (=0
o+l +1 n n+l1 .
20Uy + (L +2r+ Q..PG.Cb PR u sr 2-t-Ax-h i=M+1
i
Cmo =0 for X =
4
1 1
Cwoﬂhxl_ for —-gX<—
4 2
1 3
CmouL.x.fw for - s K<
2 4
3
So =0 for — %X
a4
‘Where P c.l%...D~
5
Ax™
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ﬁ‘
Linear system

Method

The linear system to be solved can be described by the following equation

AU o F
‘Where
(1 + 21+ can -t .
- {1+2r+cAD -1 . R
A= . -T
. -r (1 + 2t + g At) -r
L . . . ~2r (1 + 2r+ oAt
n+1 ﬂ~=
8
0 U
P el
4+l
2-r-Ax-h o
ACZLV
Direct methods

Gauss elimintation will require changing the system on both sides due to row

operations, this means that for each time step A and U™ is changed because US is time
dependent. This means that Gauss elimination is not a suitable method, because of
row operations for each time steps.

Cholesky method require that A is symmetric, but A is not symmetric, 5o it is not an
option. .

A suitable direct method is the LU factorization, using that A = L+U, where A for the

system shown above is general for all time steps, and since this method only depends
on A, the factorization is only imposed once.

Trerarive methods

The Conjugate Gradiant method is normally used for a symmetric A matrix, so it is
not the most saitable method. -

Gauss-Seidal and Jacobi both converges if A is diagonal dominant. The A matrix is
diagonal dominant since ¢ < 0, so both methods can be used, but Gauss-Seidal is
faster than Jacobi. Gauss-Seidal is therefor the most efficient suitable iterative
method.

Conclusion

Since a direct method gives a exact result for the first iteration the LU factorization is
the most efficient method for the system.

Tof 7




EXERCISES 3

053 20-12-2013

Homework 3

For the numerical modelling of a new technique of contamination contral, it is interesting to solve the following
diffusion.reaction PDE

PDE to be sclved g = v, + ou in the domain [0,1], and with t > 0
Boundary conditions u(0,1) =0 Dirchiet
nfl,1)=0 Neumann
initial conditions 4(%,0) = 0 for  xeo
(all dirichlet) 4
u(x,0) =4x~1  for L
4 2
i 3
ufx,0) = —dx+3 for —gx<=
2 4
u{x,0) =0 for m <x

inthe PDE, v » 0 is the diffusion coefficiert and o < 0 is the reaction coefficient.
Both coefficients can be considered constant.

Question a - Propose an explicit finite difference scheme for the solution of the PDE with
boundary conditions and initial conditions. Detail the numericat treatment of the boundary
conditions.

The explicit scheme to solve the parabolic PDE is the Forward in Time Centered _(Wumnm (FTCS).

This methed is based on central difference in space (x) and *cgm_.nMW:_mq method in time ().
This leads to & 1st order of convergence in time and a 2nd order convergence in space.

+1
The method is conditienally stable when ¢ < 1 m _.__ m

2
Since the method is explicit the computations are inexpensive,

The methed uses 3 points to calculate the solution as shown
in the figure.

k1 k e+l

w}w where equation
St 15 imposed

.m.mwww unkrown

1of 12

cis 3 20-12-2013

The discrete problem of the given PDE can . . the following

n+l n n n n

u -1 u b -2uy +{w

Discrate problem k LI H k L A _A‘L
At

3 + o..:r: + ._.w:
(Ax)

Where ._._az is the truncation emor

By neglecting the truncation error the numerical preblem of the PDE can be written as the following

n n n "
ol _ L | K n ??TL + ?_Aiv - N.uL
LN = At .|DIH| oy 2
- A
I
A
:w_..i =y + oA + vt _H?w Ls + ?_ﬁ _Un - N.s_nau_
2Lk~ +
(Ax)
4
P n+l _ n n n n
Numerical probiem U= H.Ac_i_v +(1-2000 + H.chx; + oAUy Y
Where s is given by rey. At
2
(Ax)

Boundary/injtial conditions

On the following piciure the different conditions of the probiem is shown.

Biriehlet B0 steurdng B0

/
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When calculating the sclution beth the Ditichiet B.C.'s and |.C.'s are functicns on time and can sasily be used in the
formula. They are both used to specify the starting points.

The neumann B.C.'s on the sight side is & bit more difficult to implement, since they are variable with time.
To solve that we introduce a fictitious point at the right-hand side of the right boundary as shon in the figure below.

=0 wurt
: il

kD k=t k=M k=M+1

Using the approximation of the boundary condition

n_ 1 n
(Ungas) = (Upg)" + 2-2ch
So at the final step in space we use the following medified fermula

Modified formula ?Ziwz,_

=20Up + ?z:u: - N.H.?

Zivn + 2rAxh” + q.Dn.Hc

giv:

n

Where L" is the neumann B.C

Guestion b - Which scheme is obtained for & = 0 {diffusion equation)? And forv=0
reaction equation)?

Assumption

1) Still considering the FTCS scheme

g=0

We then get the following expression g = Uiy

Which is known as the 1D diffusion equation.

The discreta probem is defined by the following:

Discrete problem = + T

Neglecting the truncation error we get the numerical problem

3012

At D.XM
4
Ea:i = _Jna + C.PHNTE_TL: + ?IL; - m.ﬁ#@
(ax
4
Numerical problem u = _,.Ac_?;: +(1-20-U0" + Achwu

With this we can still use the FTCS methos to solve the diffusion problem.

v=0

The discrete problem is as followed mr:i —

=qm + T
At kT k
Neglecting the truncation eror we get the numerical problem

U oy s Avey”

¥
u = are ]+ 0

By looking &t the numerical problem we can see that there is no need for boundary conditions to campute the solution
at the next time step.
B tng m\rm, 2

Question ¢ - Take v = 0.1, o = -0.1, Ax = 0.25 and At = 0.1, and compute two time steps with
the explicit scheme proposed in section a, Are the obtained results reasonable? Discuss
with the help of the graphic of the profile of u.

Diffusion coefficient vi= 0.1
Reaction coefficient o= ~0.1
Discretization-step in space Ax= 025
Discretization-siep in time Ar=10.1
. At
Firsi | calculate the value of s ri= r=0.16
(A

This is smaller than 1/2 meaning that the solution is stable!

40f12




Formula used

PHietRE Heumann RS Solution at node 8 (U)" = U)o (1 = 29{0y)" + 1 (U)) + (1)1
(0)"" =067
Given data x uw
(Uy)° = Lw 3
N " » + ?&o =0 initial condition
m&ﬁmﬁf AQLQ =0 2l condition
M 2 % Formuia used B U ) 0 -2 o) ¢ ety
Soluts . 0 SRR RN S AR AN |
The above figure is used when computing the solutions at the 2 time steps. oluon at nade $ AC& ! AC& * (1 =20 Hva T ACMV oA AC&
st time step . (Uz)**! =016
Given data x=i
4
ﬁdovc =0 Dirichiet B.Cinitial condition Given data k=1
) ?wvo =0 Initial condition
) ug) =0 Initial condition
Fomula used h, =0 Neumann B.C.
Selution at node 7 (U =)+ 2 {u) 4 () + o ar(vy) Formula used Acziv__i =200y + Uy} = 20Uy, )+ 208et” 4 080 Y
? voi ols ) . Solution at node 10 Actot = N.AC&O . Acbo _ M.ACLQ + 2rAxhy + q.?.?to
O =
, ACL?_ -0
Given data x= W
o 1 ‘ 2nd time step
Uy =4--1 initial conditicn
4 Given data x= 1
(Ug)° = x+ 3 Initial con 4
(Ug)™** =0 Dirichiet B.C.
Acuvo =0 Initial condition
AcLoi =016 From time step 1

Sof12 Sof12




Formuia used

;. Solution at node 12

'Given data

Fomula used

Solution at node 13

Given data

Fomula used

Solution at node 14

Given data

?&oﬁ =087 From tme step 1

F 1 ed

u = AU+ -8 £ r(U, ) ey ormuia us
() = (up) !+ - 20 0 {Ug) T e (u) Soluion at node 15
(U =02

_1
=L

’ Solution vector
ACL?_ =0.16 From time step 1
mcmvoi =0.67 From tme step 1
ﬁcuvoi =0.16 Frorrs tme step 1
n+l

U= v?wt% +(1 =200 + q.ﬁc_lva + ooy

U = e ()P ¢ - 2000 U)oU)
(ua) 3 2 1

(Uy) " =0
3
x==
4
Acuvoi =0.57 From time step 1
(U =016 From tme step 1
(ug)™ =0 From tme step 1
n+l

L W+ (U )+ o sl

Aduv_i = n.ACtoi +(l- na.ACuvoi " _,.A vc.L " Q.Pﬁ.ﬁ,ﬁmvoi
(Ug) ™ =024

x=1

Acuwot =0.15 From tme step 4
(U™ =0 From tme step 1

Tof12

h, =0 Neumann B.C.

?Ztvut =200y + (1

Zi% - M.Ac v: +2rAxh + q.?.?

M+1 Ziv_,

()" =2y () -2 w2 Aty ¢ o (U

(ug)™! = 0051
(vo)”
()’
(W)’
. 0
(Us) 0
0+1 o
(Vo) 0
0+l 0
() 0.16
U= chvoi =| 0.67
© vo: 0.16
3 0
?501 9
Ll o
(Vo) LE
1e1| |0214
() 0.051
ACMvT:
AC&_.L
ﬁcipiw
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Graph of problern

_The graph below shows the Initial conditions and the solutions at both time step 1 and 2,
. :7The scheme, with the choosen dicretization in both time and space, are behaving as expected, since it seems o be
e stable.

_.._,:m.mo“c:c:_m:o::mﬁmooﬁmﬁmEmomu_snaeﬁm Em:z nﬁum_sm bx_Emsa,._m:o:Em::mEﬂo:u:N ~ Qﬁ
“That is the best we can do when using the scheme FCTS .
*To get solutions that are more accurate we can chese to use the BTCS or Crank-Nicolson method. Thay are more

- expensive in computational cost, ut both are unconditionally stable.

b

. e ime suep 1

a6 A s .m.nm.nwm .
+Eab rensitons

b4

4,

Questicn d - Propose an implicit finite difference scheme to solve the PDE with boundary
conditions and initial conditions. Detail how the boundary conditions are treated, the
structure of the matrix and the most suitable method to solve the linear system of
equations.

The PDE can be solved by using the _Buzo:%\\c_mﬂ method BTCS. This is more expensive in
computational cost than the FTCS. But on the~other hand it is uncenditionally stable.

To solve the row U+ there must be drawn up & linear system of equaticns. The linear system can
be written with matrix and vectors.

Te write the implicit method we have to make som approximations. These are shown below;

Approximations d ?,Vﬂ_i " ?&ai - ?&: .
O e

At

gof12

By substituting the equations we can now wiite the implicit methed

_._.Ll n U n+l ~2fu o+l U n+l
Implicit method (BTCS) (g™ - (% urA = S G +q.?e=t

At Dxn

By neglecting the truncation eror and make som basic algebra we can write the numerical problem.

ﬁcﬁai lﬁﬂwv ltw.wﬁ? vzi 5 AC&:,L ACw.:vn.LHi . b;.o..ﬁ &ai

Setting the r factor s U—

(6 =0 G = 2= s —o(U
4

T+

(U= A.?T_Vn: (1 + 27— Aoy (U

4

Numerical problem = A.?

_?Lnt (1420 b.ﬂ.qv.ﬁc&:i - Acxiv:i

For an example we use the same step in space as in quastion ¢)

Since this is an implicit methed, we now establish 4 equations to solve the first time step. They are show below:

10 0f 12




13t equation

2nd equation

3rd equation

....2: equaticn

- solutions
: ..mﬁﬁ..: to be solved

 Where

U= -H.Hc&ot (1421 E.&.?L?; - Ac&ot
cNo - »Ac_vol {1+ 20 E.S.Ac&o: B Acwvf_
y’= A.Hcmgo: + (14 20 - Ao (Us) ! - (U t?;

4

U= A.Ac&oi w1 e2r- E.qv.ﬁcti - .Tcmvoi + N.Dxaxc.&

041

AR [NH.?WV?; (4 2= aro{U) ! -2 Avuly

4

Cao + 2-r-Axufl, ) = -2 duvoi

AU™ =10+ F
(1+21-Ata) -r
-r 1+ 2-r— At
e { %)
0 ~T
0 0
1000
0100
I=
¢ o010
0001
AC_ J+1

+{1 + 20— Aro){Uy

voi

Then | set the equations on matrix and vector form. From that | can compute my unknown

0 0

-T 0

(1+2r-Atg) -
-2r {(I1+2r- Dw.&

i1of12

2-rAxudl, )

Then we evaluate which method is best for solving the linear system.

Direct methods:

« Gauess elimination is not very usefull because it is necessary to make row operstions for every time step

« Doolittle and Crout factorization because there is created a lower and upper triangular matrix there can be used for

every lime step. The difference between this scheme: If L has ones on its diagona!, then you have done a Doolittle
« factorsation. If U has ones on its diagonal, then you've done a Crout factorisation.

+ Cholesky is not usefull because the A matrix is not symmetric
{terative method

+ Jacobi can be used when the A matsix is diagonally dominant

« (auss-Seidal can be used when the A matrix is diagonally dominant or symmetric and positive difinite.

+  Gauss-Siedel is faster than Jacobl. And depending on how precise a soluticn that is required it is oiso faster than
Doolittle and Crout where it is required to selve 2 tinear systems for each time step. And with Gauss-Seidel it is
possible to chtain a approximation by solving one linear system.

« Conjugate methods is namely used if A is symmetric

Summery: if we assume the A matrix sbove and two time steps. We get the following calculation steps

Coolittle or Crout:

1st time step 3 row operations + 24 equations

2nd time step 2*4 equations

Gauss-Seidel with 2 iterations
1st time step 2*4 equations

2nd time step 2*4 equations

So we will use Doolittle or Crout because it give us the precise solution by not many more calculations

o

12 o0f12




STUDENT 4

(NoTABLE ) "

ETHODS for PDEs
WiEELes us ooeawe s womputational Mechanics
Fall Semester 2013
Homework 3: Finite Differences

EXERCISES 3

For the numerical modeling of a new technique of contamination comutrol, it is interesting to

solve the diffusion-reaction PDE

fy = Vligg +0u in z€(0,1),>0

with boundary conditions
u(0,t) =0 and wue{l,t) =0

and the initial condition

0 for z<1/4
4r-1 for 1/4<2<1/2
—dz+1 for 1/2<2<3/2

0 for 3/4<x

u(z, 0) =

In the PDE (1), » > 0 is the diffusion coefficient and o < 0 is the reaction coefficient. Both

coefficients can be considered constant.

e T TV T A | ol
L R = e M 3 W W et R TR 6
mau,. Dau 12°0 B, T (8 (©)

In the case of FTCS - explicit scheme the equation is imposed at nede (3,n) of the grid. In this
case we replace u with the nodal value UT.

uff = U7 (7

In this case (1) becomes:

e wl - 20l ul n 2
A =Y Ag? + ouf + Ti(Dt, Ar®) (8)
. At
Mt — gl = ] (ul'; — 20} +uly)) + oAt + Ti(At, Az?) (9
We definer r = v£%

M e e | 4 (L oA — 2r)l + ruly, + Ti(AL Az?) {10)

Neglecting the truncation error T; we obtain the explicit scheme:

UP = pUTy + (1 + oAt — 20} UP 47U, (11}

a) Propose en explicit finite difference scheme for the solution of the PDE (2) with bound-
ary conditions (2} and initial condition (3). Detail the nurnerical treatment of boundary

conditions. It is straightforward to see how we apply the Dirichlet boundary condition (DBC):

b) Which scheme is obtained for o = 0 (diffusion equation)? And for v = 0 (reaction equation}? w(0,8)=0; Up=g"=0 n>0; (12)

¢) Take v = 0.1, ¢ = —0.1, Az = 0.25 and At = 0.1, and compute two time steps with the
explicit scheme propcsed in section a. Are the obiained results reasonable? Discuss with
the help of the graphic of the profile of u

In this case the value of the DBC is already given in the form of ¢" we do not need to compute
this value. Considering this we set the starting value of ¢ in the numerical scheme to 1 =1,....

d) Propose an implicit finite difference scheme to solve the PDE (1} with boundary conditions In the case of the Neumann boundary condition NBC the prescribed value cannot be used in
{2) and initial conditicn {3). Detail how are boundary conditions treated, the structure of an explicit way, as a result we have to compute the value of this boundary node U, for all
the matrix and the most suitable method to solve the Hnear system of equations. n>0

a) Solution: Uity = UL+ (1 + o8t = 2r) Uppy + rU5p {13)

The numerical scheme for i = M + 1 leads to a node outside of our defined domain (1,M+1}.

A8 . . . . . .
We wvm&w discretize the time-space domain with a uniform grid as follows: To solve this problem w have to introduce a dctious node at Uf, .

& == g+ 1Az =0 M+1

P P I
=4 nAt n=0,... ) u Hm|§ HE.TGADH_“JHEU (14)
Oy g 2Ax
In order to develop the explicit scheme we apply the following numerical approximations using
Taylor expansion. Forward in time and centered in space: Uf = UL + 252 = U, 4
n (15)
. ty{1,t) =h"=0 n>0
oul* Logr 1 8% .
dulr 1, ) 5
- gty 08 (s)

i.

Bty o At
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Substituting (15 into {13):
Q@ﬂ =2UN + (1 + oAt —2r) Ugeyy

We obtain the complete definition of the numerical scheme:

UP = eUR |+ (L oAt =2y UP 40U, d=1,.... M nz0

T |
@ﬂ.t“maﬁﬁo ' BNO

Ul =2rUf + (1 4+ ot = 2r) Uy nz0

O == f;

0 for ihz<1/4

_ 4z -1 for 1/4 <idx<1/2 . )
F=3 _gp+1 for 12gidg<sa 0o MEl

0 for 3/4 <ihx B

b} Solution:
For o = 0 (diffusion equation} we obtain a parabolic equation of the form:

Uy = VU in T E(0,1), £>0
w(0,t) =0
U, (1,8) =0

In this case the numerical scheme {17) will take the FTCS form:

UM = pUR + (1= 20U 4700, i=1,.. M 20
Q%iadm_ziﬂo n>0

UL = UL + (1= 20 Ul nz0

Ul =

For v = 0 (1) will take the form of an CDE:

uy = oU in ze{01), t>0
u(0,t) =0
1g{1,8) =0

The numerical scheme (17) takes the form of the Forward Euler method:

UMt = 1+ cAH UP i=L...,M nz0
UEt =gt =0 nz0

Wwﬁw =(1+cAt)U%,, n=0

=T

(18}

(17

(18)

(19)

(20)

(21)

€/ DULuLIVLL.

Tor v =01, ¢ = —0.1, Az = 0.25 and A¢ = 0.1 (17) takes the form:

At 0.1

Ty = lleog = 0.16 (22)
Pt = 016 (UF, + UR,) + 06707 di=1,.... M nzd
UF =0 nz0 (23)
Ul = 0.32U% + 0.67U%, nz0

=0 o010 0
s Step 1:

Ul =0.16(UF + US) +0.670U2 = 0.16(0 + 1) + 0.67 - 0= 0.16
U} = 0.16(U? + US) + 0.67U7 = 0.16{0 + 0} + 0.67 - 1 = 0.67
Ul = 0.16{U + UD) + 0.67U = 0.16(1 +0) + 0.67- 0= 0.16

Ul = 03205 + 06700 = 0.32-0+0.67-0=0
Ul=1[0 016 067 016 0]°
* Step 2:

U2 = 0.A6(UF + U3 + 0.6707} = 0.16(0 + 0.67) + 0.67 - (.16 = 0.2144
UZ = 0.16(U} + U3} + 0.67U} = 0.16(0.16 + 0.16) + 0.67 - 0.67 = 0.5001
U2 = 0.16(UL + U4) + 0.67UF = 0.16(D.67 +0) +0.67-0.16 = 0.2144
UZ = 0.32U} 4+ 0.67U} = 0.32- 0.16 + 0.67 - 0 = 0.0512

.C.w

i

[0 0.2114 05001 02156 0.0512)

Finally we obtain for 3 time steps:

0 0
0.16 0.2114
0.67 0.5001 (24)
0.16 0.2114 4

0 0.0512

c
I
ocoroo

Explici methad - Low resoldtion gnd

Figure 1: Graphical profile of U




We can draw the following conclusions based on the graphical profile of u:

¢ The method is stable, given r = 0.16 < 1/2. There are no oscillations and a convergence Dot =5

trend can be observed.

e R e

s The boundary conditions are respected. At x = 0 the DBC is respected, while the NBC
is computed for every step (at n =24t %, # 0.

« We can see that the initial value of I = 1 diffuses throughout the interval.

s Due to the presence of the reaction term with the advance of timne elements are being
consumed: Ug > UZ.

‘We can state that the method is behaving as we expected, the results are reasonable.

d) Solution:

In order to obtain the implicit method we have to apply backward time we impose the equation
in node UP™ instead of UP as we did in the previous case.

(6), (6) take the following forms:

Bu|™ Wt —wr 1 ™!
—_— =21 - At + (AP (25
at|, Ja¥ 27887,
mu_ﬁ nl .r_.u.a.*.% _ Mﬁ_ﬁ._.w + QM_JH 1 mmAﬁ. n+l 4
uilied O Wk S M 2 S W il 2
fz?y, An? 1277 Bt ; + 08 (26)
We impose the equation in not U so!
uff = U 27)
Substituting all (25), (26) and (27) into (1) we obtain:
nt+l | on ntl _ 2} 71 nt1
g =R TR ot 4 T A (28)
Neglecting the truncation error 7; and collecting terms:
—rUM + (14 2 — o AOUPT — 7 U = U {29

The DBC can be used directly in the computation of elements U, In this case (29) is valid
fori=1,..., M.

For the same reasons as stated at peint o} the NBC cannot be used directly in the computation
since it defines u., over the boundary. We have to evaluate (29) at the boundary node i = M41.

—rUER 4+ (14 2r — cAOUEY —rUREL = Uy (30

In (31) the term U, is outside our defined domain. Tt is a fictious node and it's approximation
i defined by (15).

=2rU5 + (14 2r — cAOUTTL = Ul {31)

The smplicit - BTCS method takes the following form:

—r P (1420 — e AP U = U i=1,.. M nz0
Ut =gt =0 nz0 (32)
= —20UEH 4+ (1 + 2r — cADURY n>=0
UP == i=0,...,M+1
We can write the implicit scheme in the form of a matrix equation:
AUHN=T.U"+F {33)

Where the dimension of A is [M-1,M-+1] since we compute the nodal values of the grid U
f=1..., M1
U =[U, U ... Uuss]” (34)

When we reduce the size of the system from [M+2M+2} to [M+1,M+1] (considering DBC at
(0,t)) we have to conserve the effect of the boundary value —rg™! on UF*. Thus we introduce
F where [} = rg™! whereas Fj.; would contain the boundary value of the approximation of
UBL. In our case Fyrqq = —2Azh" = 0.

F=[rg™ 0 ... 0 —2Azh*+]7 (35)

(1 +2r— git) -
- (1+2r—oAf) —r
A= {36}
—r {14+2r—oglt) -7
—2r (1+32r— cAt)

Since A is tridiagonal it is convenient to solve the system using the Thomas algorithm.

Implicil method - Low regolution ghd

0B

0E

0.4

02

Figure 2: Graphical profile of U

We can observe a better treatment of the NBC at x = 1.




Appendix:

it methed - High rezolution gnd

Figure 8: U obtained with a high resolution grid, explicit method.

Explicit method - High resolution grid

Figure 4: U obtained with a high resolution grid, implicit method.

Explicit methed - Low resolution grid

ae

o0&

0.4

0z

Figure 5: U obtained with a low resolution grid for which the explicit method is unstable.

zeros (1, tstep+l);
t = linspace(0,Dt+tstep,tstep+ll);
linspace(

utlen

figure(l),clf
subplot (1,2,1}

surf(t,x=,0),
(mode ==
set {h,

,Dx,nu, 819, g}

axis ([0 Dtxtstep a b 0 11D




58 title{ttl);

60 xlabel {("L*);

sl ylabel ('z');

52

sz subplot{l,2,2)

s plot (xx,U)

s xlabel{(’z'}, vlabel(
e axis sguare, axis({0 1 0 11}
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Matlab code.

funetion U = parab_sx
% Doussavts

nu input( diffusicn conntantg
sigma input('zeacticl: constant
-1 input(‘'a
=3 input(‘x
m input(’
Ax

x
npoints
tEin
npast
At

t

NN ow R R

whar of intmreals

LTI I I I I I 3

[athy:b];

length(x);

input{ finsl time = 'y
input{ Wumbez of Lims steps = 'y
tfin/npast;

[0:At:npast*at];

At/ (Ax*2);

nu*At/ (Ax*Ax);

sigmarht;

wuon

LI I T T 4

r
S
B

fox 1=1l:ppoints
£(4) = 03

for i=l:inpeints
3% x(i)<{1/4)
(i) = 05
elsaif x(L)>=(1/4) && n{i)<(1/2)
£{4) = 4*xti)-1;
elseif x{i)>={1/2) && w{i)<{3/4)
(i) = -d4*x{i)+3;
alself x{i)>=(3/4) && x{i)<=1
iy =0
angd
end

B Dizdohlze BO ak oz o= a.

gb = 0;

[t m0} = sizei{gl);

if((nG==1} && (ml==1)}, g = gO*ones(l,npaat+1};

sleeif{(nl==1) && {mO==npast+l}), g = g0;

alea error{strcat( Error ii the heundary condizians in x=',numZstr{a}))

foz i=l:{m+l)
Ui, 1) = £{3);

% Computing sclution considering Heuman 28 2t x o= h
for j=2:(npast+l}
feor i=2:m
Ui, ) = A*U(i-1,9-1) + (I-2*A+B)*U(L,-1) + B*U(i+l,§-1};
wnd
Uimtl, §) = A*U(m,3-1) + (1-2¥A+B)}*T(m+l,3-1) + A*U{m,5-1);

icit schems for diffusion & reantion”);
lagend( ¥=0"', "T=C.1", “§=0.2"};
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STUDENT 2

(EXcEL- LENT)

_ 17/12/13

Numerical methods for PDIs
EXERCISE 3

For the numerical modeling of a new technique of contamination control, it is interesting to solve
the diffusion-reaction PDE

Ut = Vg -+ FU mre(01),t>0 1
with boundary conditions
w(0,t) =0 and u.(1.2) =0 {2)
and the ipitial condition

0 for x<1/4
4z -1 for 1/4<aly2 )
—~dx+3 for 1/2<1<3/4
0 for 3/d <

wlx,0) =

In the PDE {1}, v >0 is the diffusion coefficient and ¢ < 0 iz the reaction coefficient. Both
coeflicients can be considered constant.

a) Propose an explicit Anite difference scheme for the solution of the PDE {1) with bound-
ary conditions (2) and initial conditions {3). Detail the numerical treatment of boundary
conditions.

b) Which scheme is obtained for o = 0 {diffusion equation)? And for v = 0 {reaction equation}?

¢) Take v = 0.1, o0 = —0.1, Az = 0.25 and At = 0.1, and compute two time steps with the
explicit scheme proposed in section a. Are the ohtained results reasonable? Discuss with
the help of the graphic of the profile of w.

d) Propose an implicit finite difference schere to solve the PDE (1) with boundary conditions
{2} and initial conditions {3). Detail how are boundary conditions treated, the structure of
the matrix and the most suitable method to solve the linear system of equations.

a}

Setting an explicit finite difference scheme of the type FTCS, we can approximate the derivatives
- ....mws,ﬂ. .ﬁmtlcw . .
—_— l.llHﬂ%......GﬁD& - - . 4)
S
eifa
FT

herefore imposing the aquation on noge i, ab.time 7 and Deglecting the truncation errors, yields
followinp mimerica}l Schem) ; ; ;

Numerical methods for PDEs Exercise 3

rearranging

T AR UL )+ AtgUR + U i=1,.,M+1 {7

and finally defining r = 24

UP wrUPy + (L4 Abo — 20)UF 4o, = 1, M 41 (8)

Notice that for = 0 (i = 0}, we have Dirichlet houndary conditions and there is “no problem”,
Uy is known in any time-step. However on the other boundary we have Neumann boundary
conditions, this means that the equation has to be imposed on = =1 (i = M + 1), where we need
a fictitious node ¢ = M + 2 in order to compute the approximations. The value on this node can
be obtained from the houndary condition. Using the following approximation of the derivative in
the Boundary .

£

a4

therefore from the boundary condition we obtain that the value in the fictitious node is:
iy -
%hal.vg;mﬂﬁ. {10}
Thus, the scheme is

UPH = pUB + (14 Abo — 21)UR +0TUR, i=1,.., M.

i

Ut = (1+ Ato = 20)Uf . + 2rUR,

"o (11)
il
U9 = u(idz, 0) i=0,.,M+1
b}
For o =0
Upt o pUR & (L 20) 0P+ 7UR, i1, M
URth = (1= 21U + 20U, (12)
=0
U9 = u(isz, 0) i=0,., M 41
which iz the FTCS method obtained for a parabolic equation,
For v = 0 means r == 0
UPH s (14 Ato)UP d=1,..,M+1.
5= (13)
U? = wu(ifz, 0) i=0,..M+1
which is Euler method for solving first order ODEs for each node 4.
<)
Substituting the given values of ¥, Az and At the explicit scheme is
S.aH = 01607, + 067U +0.1607, i=1,2,3,
UF™ = 0.6TUR 4 2 0.18UF
“; -0 A 3 (14)
U? = ufiAw, 0) i=0,..4
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Therefore the approximation for t = 0.1 {n = 0) is:

U} = 01605 + 06707 + 0.16UF = 0.16 + 0 + 0 = 0.18, (15)
U} = 01603 + 0.67UL +0.16U7 = 0 4 0.67 + 0 = 0.67, (16}
Ul = 01607 + 0.67U3 + 0.16U8 = 0+ 0 +0.16 = 0.18, (17}
Ul = 06708 +2.0.16UF =040=0. (18}

And for t =02 {n=1})is

U2 = 01607 + 0.670] + 0.1607 = C.1072 +0,1072 + 0 = 0.2144, ¢

U2 = 0.16UF + 0,670} + 0.16U7 = 0.0256 -+ 0.4489 + 0.0236 = 0.5001, (

U} = 01607} + 06703 ++ 0.16U7 = 04 0.1072 + 0.1072 = 0.2144, (2
= 0.67U} +2-0.16U} =0+ 2-0.0258 = 0.0512, (

Graphically the result is

Node
o 1 2 3 4
T T ¥ T T
1.0+ —8— =0
1 —e— 1=(.1
044 —i— =0.2
0.6~
=]
0.4~
024
0.0
T y T T T T
[} 02 04 0.6 08 10
a-coordinate

Figure 1: Explicis finite difference approximation.

The numerical results are reagonable, the diffusion effect is appreciated because the pick value
is lower as time sdvances. Meanwhils, the surrounding nodes of 2 {whera there Is located the
pick-value) incresse. The reaction term effect can be appreciated because all values are smaller
than what they would be without teaction, this effect Is clearly appreciated in the central node.
At i = 0 the boundary condition is always satisfled, UF is always null. At 4 = 4 the boundary
condition is also satisfied, the conditions says that the Hux is mll, therefore an increasing of Uy
in time is expected because of diffusion effect.

v

Numerical methods for PDEs Exercise 3

&)

Setting an implicit fnite differance scheme of the type BTCS, we can approximase the derivatives
as
n+l T
S i 100 (23)
At
a..r— - D ;.l EN E

I SS ?.L .m
=B L 08 {24)

Bu
ot

i

Pl
f22 |,

Therefore imposing the equation on node ¢, at time n + 1 and neglecting the truncation errors,
yields to following numerical scheme:

Ut _up  URR - aurtt L updt
=V

> 7 ol i=1, L M1 {25}
YEArranging
Uptt — va UPEL ~ Ut L UMY - AgelUP = U i= 1, M1 (26)
and finaliy recalling the definition r = v Dbm. :
—rURE + (1 — Atg + 20U —pUP =07 i=1,.., M +1. (27)

In order to deal with Neumann boundary conditions, the same strategy as in the explicit method
can be used:
3+u ﬁﬂi...

E.E - - n
A =0 U, = U {28)

Thus, the scheme i3

U 4 (1 Aty 4 P AU =P =1 M
{1— "N+ U - wﬁ,qnt =Uha (29)
b=
U2 = ufiAz,0) i=0,.,M+1
The svstem of eguations that need to be solved is
AU = UL F (30
where, taking & = 1 — Ato + 2,
o —-r rul0, {n+ 1)AL)
~-r a T up 0
A= . . Ut = : F= :
- & —r HI.._ 0
=2r & 2AzT, (1, (n + 1) AZ)
(31}

Notice that for this particular case, sinee both boundary conditions are null F = 0. Thus, the
system of equations takes the form:

AU =" {32)
Tn grder to solve this system of equations, is better to use a direct method, because the dimensions
of the system is quite small. Within the direct methods Choleslky cannot be nsed because A matrix
is not symmetric positive definite, therefore & suitable method would be LI/ decomposition, no
matter if it's used Doolittle or Crout. Even more, since A is 2 band matrix we don’t need to worry
about fill in issues.




Numerical methods for PDEs Homework 1
ODEs Due: November 26, 2013

Compute the numerical solution of the following the initial value problem (IVP)

v '=y—x in(0,1)
y(0) =1, y'(0) =2

The exact solution of this problem is y = exp(z) + z.

1.

Implement a routine for the solution of IVP using Euler, Heun and 4" order Runge-
Kutta method. Plot the solution obtained with 8 time steps of RK4 and compare it
with the Euler and Heun results for an equivalent computational cost (i.e. same number
of function evaluations). Draw some conclusions.

Check the convergence of the methods: plot the logarithm of the error at the end point
x = 1 vs the logarithm of the number of function evaluations. Do the results agree
with the theoretical convergence rates? Comment the results.

Solve the IVP with the ode45 Matlab function. Which method corresponds to this
function? What can you ensure about the accuracy of the obtained solution? How
could you improve the accuracy?
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PDE ' 1 ¢
HOMEWORK 1
Assumption yi=y-x in 0,1

Inittal conditions y(0) =1

y(0) =2

Exact solution

y=exp{x) + X
1.
Scripls Euler.m Heun.m RungeKutta.m
First order system AP y 20 y = 2

2) A2 |
( —y ()m}, =y_h=()_\

Vectors

N 7(1) 4 Z(2) s [IJ

7 = -y = () =

(2) dx (n
- X

The vectors denotes the first order system.

Euler Equation Yi+1 = Yi + h-f(xj,Yj)

Function evaluations m=32
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Function evaluations
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Heun .. . i1 .
— Equation Y'Jrl =Y + hlix,Y)
i+1 _ Y> N
Function evaluations m= {6
4 Ll ‘ S -SI'.‘-ue:c}g.::
Runge-Kutta Equation ki = f(

ky=fix + 0,y + h-k3)

o
v vy é-(k, F 20+ 20+ ky)

m=28

20f6
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Conclusions
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Scripts

Convergence

The plots show the numerical solution (blue) and the exact solution {green). The
' Runge-Kutta method is here a 4t order, the Heun method is 244 order and the Euler

method is a 1% order, so to make the same function e¢valuations and here by
equivalent computational cost there are used different time sieps ['or each method.

Even though we are using the same function evaluations, it is clearly to se that the
Euler method is less exact than the to others by looking at the plots. It is a bit more
difficult to se witch one of Heun ore Runge-Kutta that is the most exact method, but
by theory the Runge-Kutta should give the most exacl solution. So if’ you need an
exact solution instead of a fast, Runge-kutta is the best method to obtain this.

Euler.m Heun.m RungeKutta.m

If a method is convergence the error should decrease when the size of the time steps
is decreased.

The plots show the error as a function of time steps. The slope shows the order of
convergence.

Jof 6
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2 A 1.9
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¥l




r:_lvermfat Politecnica
De Catalunya
Barcelonalech

Runge-Kutta Expected order Order Matlab

4

39

I

Conclusions The results for the orders of convergence could have been even more exact by using
a higher number of time steps, but you can sec that the order from matlab is almost
equal to the expected order.

By looking at the order of the convergence for each method, you can see that the
error of the Runge-Kutia would decrease 4 times as fast as the error of the Eufer
method and the error of the Heun method would decrease 2 times as fast as the Euler
method.

%

g‘&'{);
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Scripts

ode45

Accuracy Matlab

0 (g
. l{f
j ("\ ﬁ
.\, b
L6 B C..»“'
PRI H‘ A
i A ki
ot 1 ;,! V,,:fi/é .
1\9* Y-ty

Improve Accuracy

Fm Ode45.m Comparison_ODE45_Euler.m

Matlab is using the function RKF435, when using oded5.

Matlab is programmed so it controls the focal error. The maximum value of the locat
error is equal to 1-10 6

The global error for oded3 (the error at the end point x = 1) is calculated in the

script, and has the value ey,p, = 6.388: 10”7 witeh is really small, and thereby the

ode43 gives good accuracy in terms of getting the best approximation. As a
comparison the error at x = | for the Euler method using m = 6-41, witch gives the
same computational cost as oded5, is equal (0 eghy = 0.0055. So the accuracy

method of ode45 and Euler would be oded3,

The approximation accuracy could by improved by using more time steps and by -
using a method of higher order and thereby doing more evaluations of f for each tlm
step, witch would result in a truncation error of a higher order.

6 of 6
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Homework 1

In the assignment we are giving a 2" order ODE, but Euler, Heun and Runge-Kutta all assume a first order
ODE. Therefore it is necessarry to reduce the 2™ order ODE into a system of first order ODEs.

Initial value problem y'=y—-x in (0,1)

Boundary conditions y(0) =1, y'(0)=2

System of first order ODEs, where we set introduze two new functions (z; and z;)

w=y and y,=y

We now get the two new 1* order ODE’s

»=y =y

)’; =}" =y, and J"z :)’" :y;x:)ﬁ - X

We have now reduced the 2™ order ODE into a system of 1% order ODE. This means that we can use the
schemes of Euler, Heun and Runge-Kutta.

Question 1
The following plots (figure 1-3) show the numerical solutions of respectively Euler, Heun and Runge-Kutta
compared to the exact solution given in the problem.

Euler 32 steps (Red line = Euler, Blue line = Exact}

"

Figura 1 - Euler method with thme sten 32,



] Numerical methods for PDEs

Heun 16 steps(Red ling = Luler, blue line = Exact)

4 v y T T T T T T T
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o
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e
A
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X
Figure 2 - Heun method with time step 18,
4 Rurge-Kulta § steps (Ped line = Runge-Kutla, Blue fine = Exacl
T T T T F T T T T
//;-
a5l // 4
// ’
3F - -
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L e |
J/
e
<1 ,’)f* -
o
-
e
1sh o 4

L
0.2 0.3 0.4 0.5 0.6 6.7 0.3 0.4
X

Figure ¥ - Bunge-Kutta with time step 8

Because of the different orders of the schemes (Euler = 1% order, Heun = 2" order and Runge-Kutta = 4

order), we use three different time steps to compare the three schemes.
When the three plots with the equivalent computational cost are compared the differences looks small, but
at the plots it can be seen that Euler is the less precise one.

If we zoom in, the plots show that Runge-Kutta is more precise than Heun.
Therefore for the same number of steps Runge-Kutta is more precise than both Heun and Euler. But at the
same time it is a more expensive scheme.

Homework 1
26-11-2013

th



Question 2
The following three plots (figure 4-6) show the convergence for Euler, Heun and Runge-Kutta,
Here the blue line defines the convergence of the scheme and the red line defines the linear fit.

foglemon

loglarrar]

Numerical methods for PDEs

Convergence for Evler
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Figure 4 - Convergence plot for Buler.
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Figure 5 - Convergence plot for Heun,

Homework 1
26-11-2013




Numerical methods for PDEs

Cemergence Runge-Kuita Methad
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Flgure § - Convergence plot for Runge-Kotla,
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As shown both in the above figures (figure 4-6) and table 1, the three methods are very close to the

theoretical convergence rate.

A scheme is said to be convergent if the error becomes smaller, when the time steps becomes smaller.

1 -0,93*x+0,018 _1,94%x-0,45

-3,93*x-1,76

CExpectedslope -1

-2

-4

Table 1 - Comparrison of schaemes vi. convergente.

By looking at the plots and the linear fittings it can be seen that Heun approaches the exact solution
approximately twice as fast as Euler. And furthermore Runge-Kutta is approaching aproximately twice as

fast as Heun.

[
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Question 3 g
Figure 7 shows the comparison of the ODE45 and the exact solution.
The QDEAS function in matlab uses 6 function evaluations using Runge-Kuttad5.

The error calculated at x = 1 is -6.3380e-09, which is very small. That tells us that the method is very

accurate.
The error at 40 time steps with respect to the Runge-Kutta45 scheme is calculated to 8.6662e-09.

So by using the same amount of time steps (40) the ODE4S5 function is better, but also the computational 1

cost is bigger. i1
3
i Y‘U‘ﬁ"?
The accuracy can be improved by taking smaller time steps or by using a scheme with a higher order. ' "}m -
ot \v 3
) \@( 4.5
. QDE4SIRUnge-Kutta/B K4 5 fRedline = GDE4S, Blieiine = Exact} W
T T T T T ¥ T T T
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Figure 7 - ODEAR with 40 time steps.
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NUMERICAL METHODS for PDEs
Master of Science in Computational Mechanics
Fall Semester 2013
Homework 1: ODEs

Compute the numerical solution of the following the initial value problem (IVP)
y' =y — zin(0,1)
y(0) = 1,y'(0) =2

The exact solution of this problem is y = exp(z) + z

1. Implement a routine for the solution of IVP using Euler, Heun and 4** order RungeKutta
method. Plot the solution obtained with 8 time steps of RK4 and compare it with the
Euler and Heun results for an equivalent computational cost {i.e. same number of function
evaluations}. Draw some conclusions.

1. Solution:

First of all, in order to solve the system we have to reduce the 2" order ODE to a system
of first order ODEs, the following way:

h =y, : .
_dy __dw [ . L
V27 g = Y W= da T T dey
d*y _ dys __

Ys = T2 = da
Using this notation we can write the following:
d*y _ dys

dz? - H = f(a;:yluyil) \é_

A
- Y1 o Y2 y o e
-l lsof=4 . .22 =
Y {yg},aso {f($:y11y2)} {yz}

with initial values: y{0) = and f{0) = 2
\"\L___/'///

We obtain the 1% order system:

) re{0,1)
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This function can be defined in matlah the following way:

13 e

o result = ODE_VECT F (x,Y)
result = zeros(2,1);

result{l}) = Y(2);

result{2) = Y (1) — x;

(a) The Forward Euler Method can be implemented in matlab using the following
function:

i result = FulerM (x,h,Y)
result = zeros(2,1});
result(:,1) = Y + h*ODE_VECT_F (x,Y);

710

We can compute the numerical apprixmation for n = 32 steps:

d

@

E=l !

e

n = 32;

h = 1/n;
x = 0:h:1;

Y = zeros{2,length(x));
¥(:,1) = [1;2]; #initis

for 1= 2 1 n+l
Y(:,1) = BulerM(x{i), h,¥{(:,i-1));




(b) The Heun Method can be implemented in matlab using the following function:

PDE - Homework 1 - Matlab

= W

L4l

at which the

result = HeunM{x,h,Y)

11 zeros{l,2);

12 zeros(l,2);

13 Kl = QODE_VECT.F(x,Y);

14 K2 CDE.VECT_F (x+h, Y+h+K1);
15 result = Y + h/2+(K1+K2);

16 <

v

We can compute the numerical apprixmation for n =

(¢c) The 4" order Runge-Kutta can be implemented in matlab using the followmg_.

function:

16 with a similar for loop.

- @ W

11 function result = RKAM{x,h,Y)

12 K1 zeros(l,2);

12 K2 = zeros(l,2);

14 K3 = zerosi(l,2};

15 K4 = zerosi(l,2};

16

17 K1 = ODE.VECT_F (x,Y);

18 K2 = ODE_VECT_F(x+h/2,Y+h/2+K1);
19 K3 = OPRE.VECT F(x+h/2,Y+h/2+K2);
20 K4 = QOBE_VECT_F (x+h, Y+h*K3);

21 result = Y + h/6x (K1+2+K2+2xK3+K4};
22 end

We can compute the numerical apprixmation for n = 8 with a similar for loop.

By plotting the numerical approximations, and the exact solution on the same gr ap*h we
can see a direct visual comparison of their precision: :
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Figure 1: Method comparison graph; zoomed end section.
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We can clearly observe that even if the Euler Method has been computed in n = 32 steps
it is the least performant method in terms of precision. At this detail we can say that
the Heun and RK4 methods deliver far better precision with approximately the same
computation costs.

2. Check the convergence of the methods: plot the logarithm of the error at the end point

~

‘. the theoretical convergence rates? Comment the results.

[

I

&2

Methods’ olal enors

logiE)

[

Eular = 32 -
Houn o = 16
RKdn=8 |

L y 1 L r s
05 1 15 2 25 3
Iogf#steps)

ER] 4

Figure 2: Error comparison graph

x = 1 vs the logarithm of the number of function evaluations. Do the results agree with

Observing the above graph we can clearly state that at approximately the same compu-
tational cost the the RK4 method is the most accurate.

Approxtmations at z = 1 .
EuiinP Heun | RK4 Exact solution
3.6608 | 3.7166 | 3.71823 3.7183

Total eirors -

Fuler | Heun | RK4 -
0.05675 | 0.0017 | 4.984-107° | -
Slopes of the plots -
Fuler | Heun | RK4 -
0.8239 | 2.3025 | 5.8714 -
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3. (a) Solve the IVP with the oded5 Matlab function.

The built-in ode45 function can be implemented using the following code:

P oded5 (' QE F,00,11, 101,210

oded5 approximation odedd approximalion

= 372b a
T a
3zt

= 366
s —— Exacl Solution
364 . e gl dS

3821

35t B

e
& Ery

Ly, 1 1 L L L I I \ L L
a gy 02 03 04 05 06 47 o8 09 1 096 0965 0897 0975 05 0985 0% 0995 i
x X

Figure 3: Numerical approximation with ode45 function; zoomed end section

We can clearly observe that the obtained numerical approximation is almost identical
with the exact solution. Even at a high scale zoom no difference can be observed.

Although the total error is significantly lower than any previous result when we plot
\ it related to the computational cost in terms of the step numbers (log(steps)) we can
conclude that an ideal compromise would still be the fixed step RK4 method.

A=) et b
Mﬁ{%‘ Total errors
a2 ! RK4 odedb

Con el o 4,984 .107° | 6.338 - 10 ?
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Figure 4: Total error comparison in terms of computational cost.

(b) Which method corresponds to this function?

The ode45 function corresponds to the Runge Kutta method, it uses a variable step

size and also the order can change between 4% or 5%

(¢) What can you ensure about the accuracy of the obtained solution?

We can ensure two functional parameters of the accuracy of this function:

e the relative or absolute tolerance of the function which by default is set to: 10
we can set this using:

—6.
)

et R

EOLGEANGCEY LE

oan o with

ITcl', (1e—9)) ;

oy

1;2],option);

-

Toey by

nowWwith !

‘r(1/8}}f

(oL M

B, 10,11, [1, 2], 0ption);

(d) How could you improve the accuracy?

Without significantly increasing the computational cost by adding further points
to our approximation we can enhance the accuracy using the refine option. This
parameter sets the number of iterations executed by the function to get from Yi(w;)

to Yig1{Topr)-
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(NoTABLE )

The exact solution of this problem is:
y=e‘tx

1. Implement a routine for the solution of the IVP using Euler, Heun and 4" order Runge-Kutta
(RK4) method. Plot the solution obtained with 8 time steps of RK4 and compare it with the
Euler and Heun results for an equivalent computational cost.

Before applying any of the abovementioned methods, the second order ODE of the problem must be
converted into a system of first order ODEs, This requirement is due to they are intended for solving first

order ODEs. This conversion is made with the aid of an auxiliary function u; as follows:
Uy =Y
u =y =y
Ug =y =u =y X =U X

And the resulting system of first order ODEs to be solved is:

uy =1y
Uy =u; —x
u, (0} =1
u,(0) = 2

Using 8 time steps in RK4 method implies to evaluate a function 32 timmes, since at each step the function
is evaluated 4 times. Considering that at each step of Euler and Heun method a function is respectively
evaluated once and twice, 32 time steps are going to be used for the Euler method and [6 times steps for
the Heun method.

In order to be able to implement a routine for each method on Matlab, the main calculations at each one

of them are presented.

Forward Euler method (m = 32)

Upger =y +he Flapug) =u+heuy
Upigr = U+ ho frug,) = upy + e (0 —x;)
i=01..m

h=1/m

Being the result with this method for 32 times steps: ¥

Heurn method (m = 16}

Ulipr = Usg TR Flx,w) = Uy Uy

Wy peq = Ugy R Flraw) =y + b Jug — xg)

1/9

i

e




fi h
Ugier = Uy + 5 [fCu) + f(xenul )] =+ 3 [0 + U344

h * h *
Ugipr = Ugi + 3 [f Gepu) + f(le' uz,i+1)] = Uzt 3 [um =X Uy xi+1]

Substituting u} ;;, and u3 ;. in the last two equations, the new equations to be evaluated at each time

step are:

h
Upipr = Wyt 7 [uz,i + Uy +h- (Uu = xi)]

h
Uggpr = Ugg T 5 [uu =Xt houg - xi+1]
i=0,1..m
h=1/m

Being the result with this method for 16 time steps: ¥
RK4 (m =8, .
Ky =uy,

Kip =1y, — X

h
Ky =y +§'K12
h
Ky :u1,i+§'K11_xi_§
h
K3 =ty +§'K22
h
K32 :u1,i+§'K21_xi_'z

Ky =uy+h Ky

Kyg =Uq;+h Ky — 22— h

h
U1 = Ugy T g (Kyp +2 Ky +2- K3y + Ky1)

h
Upiyy = Ug g (Kiz + 2 Kon + 2 Kgp + Kyp)

Being the result with this method for 8 times steps:

Comparing the results with the exact solution at (1) = 3,7183, it is possible to conclude that despite tli:é -
computational effort between methods has been equalled, only RK4 gives a result equal to the exact
solution for five significant digits. Forward Euler method with m = 32 is still far away from the exact
solution, whereas Heun method with m = 16 is able to give a solution with three significant digits.

279




2. Check the convergence of the methods: plot the logarithm of the error at the end point x = 1
vs. the Iogarithm of the number of function evaluations.

Theoretically, the analysed methods of solving ODEs in this assignment, are of the following orders:

¥ Forward Euler method: order 01.
¥ Heun method: order 02.
» RK4: order 04.

Therefore the truncation error of each method is:

% Forward Euler method: 9(h).
»  Heun method: 9(h?).
¥ RIK4: 9(h%).

Then, if the logarithm of the relative error is plotted vs. the logarithm of the number of time steps for each
method, it is expected to see three different straight lines with the following slopes:

» Forward Euler methed: —1.
% Heun method: —2.
» RK4:—4.

Studying this convergence in Matlab leads to theses graphs:

Forward Euler method

~ m o PO Eulerns32

e gt

S ; H EATRH,
L‘M% Earor curve

ye-0.388m4] -

The computed slope is -0,985, which is approximately -1,0,

3/9




Heun method

EIer sy

The computed slope is -1,99, which is approximately -2,0.

RK4 method

- w ARt med
¥ et

- Efret pupve
e o BIUR08 tnear

The computed slope is -4,02, which is approximately -4,0.

4/9




The theoretical convergence rates are achieved on the base of these last results.

Finally, in order to illustrate the difference in the convergence rates for the three studied methods, the

following graph is presented.

L g gk

3.  Solve the IVP problem with the code ode45 Matlab function.

This function corresponds with the Runge-Kutta-Fehlberg 45 method. In contrast to the methods
presented in this assignment, the code ode45 is adaptive. [t means that the method adapts the number and
position of the points, and then A, during the iteration in order to ensure that the local error is within the
specified bond of accuracy or tolerance.

The local error is computed at each iteration as the difference of the approximation of the solution using a
Runge-Kutta method of order 4, and the approximation of the solution using a Runge-Kutta method of
order 5. If the difference between the two approximations satisfies the tolerance, the approximation is
accepted; otherwise the step size is reduced. Also if both approximations agree to more significant digits
than required, the step size can be increased.

By default, the approximation of the solution calculated with ode45 has been computed with a relative
error tolerance of 1107 and an absclute error toterance of 1-10°°, The more are decreased both tolerances,
the better accuracy the approximation will have. These parameters can be changed through the function
odeset. '

Solving this [VP problem with the tolerances set by default, the computed approximation is 3,7183.

- T b N ] 2t % e ™,
o e ey sl H oo 2ot e sy J ?

G)u-,,x Fw,,;i‘ﬂ:ﬁ)—..@’-)ﬁ"‘j Tt o0 T T e a0 [
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Appendix 01. Routine for the Forward Euler method.

close all; clc

m=32;
= 1/m;
x = linspace(0,1,m+l);

for i=l:m+l
ul{i) = 0;
u2{iy = 0
end

’

ul(l)
u2(ly)

1
2

i
i

for i = 1:m
ul(i+i)
u2{i+1)

and

ul{i) + h*u2(i);
uz(i) + h*{ul(i)-x(i));

o

ul(m+1}

for i=1:m+l
yex(i) = exp(x(i))+x{ij);
and

vex{m+l)

subplot(2,1,1),plot(x,ul, ' *~.x’, 'Linewidth',61)
hold on
subplot(2,1,1),plot(x,yex, '-bk', ‘Linewidth',1)
xlabel('X"}
ylabel( ¥{Xi')
legend{ 'FD Tu
title( ODE sys
axis tight

LY exact’)

exac = yex{mtl);
m = [10 20 40 80 160 320 &40 12B0];

for i=1l:length{m)
h = 1/m{i};
xe = linspace(0,1,m(i)+1);
for j=l:m{i)+1

ule(j) = 0;
uze(j) = 0;

end
ule{l) = 1;
u2e{l} = 2;

for 4 = l:m(i)
ule(i+l) = ule(3j) + h*uZe(i);
uze(3+1) = u2e(j) + h*(ule{j)-xe(3));
end

errorvecfeuler(i) = (abs(exac - ule(m{i)+1))/exac);
ent

subplot(2,1,2),plot(log{m),log(errorvecfeuler), '~k , 'Linewidth’ 1)
xlabel{ ‘Leg. Bl @)
ylabel (" ; i
legend{ 'Ex
title("
axis

clear = b h ul ul sle sle ¥ xe yex exac 11

6/9




Appendix 62. Routine for the Heun method.
close all; clc

m=%6;

h = 1/m;

X = linspace(0,1,mtl);

for i=l:m+l

ul(i) = 0;
u2(i) = 0;
and
ul(ly = 1;
u2(ly = 2;
for i = 1:m

ul(i+1) = ul(i) + (h/2)*(u2{(i} + uZ(i) + h*(ul(i) - x(i))};
u2{i+l} = uz{i) + (h/2)*(ul¢i) - x(di) + ul(i) + h*u2{i) - x{i+l));
end

ul (m+1)

for i=1l:m+1
yex(i) = exp(x(i))+x(i);
and

yex{m+l)

subplot(2,1,1),plot(x,ul,  *~.xr', Linewidth’', 1)
hold on
subplot(2,1,1),plot(x,yex, ‘~&L', 'Linewidth',1)
xlabel{'X") :

yiabel{ ¥{¥X}")

legend( ' Heurn m=16','Y #xact’)

title( ODE system')

axis tight

exac = yex(m+l);
m = [10 20 40 8C 160 320 640 1280);

for i=1l:length{m)
h = 1/m(i};
xe = linspace(0,1,m{i}+1);

for j=l:m{i)+1

ule{j) = 0;
uZe{j) = 0;
and
nle(l) = 1;
nZe(l)y = 2;
for 4 = l:m(i)

ule{j+l) = ule(j) + (h/Z)*(u2e(j) + u2e(j) + h*{ule(j) - xe(j)));
u2e({l+l) = u2e(i) + {(h/2)*(uie(j) - xe(j) + ule({j) + h*ulZe(j) - xe(j+l)):
end
errorvecheun{i) = (abs{exac - ule(m{i}+l))/exac);;
end

subpiot{2,1,2),plot(log(m),log(errorvecheun), ‘~k', ‘Linswidth',1)

xlabel{ Log. I m')

ylabel( fLog. Relative Frror')
legend( 'Eryvor ourve')
title{ Convargence gyaph')

axis tight

clear s b h wl u? ule w2e x x& yex éxac i j
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Appendix 03. Routine for the RK4 method.

close all; clc

m = 8;
a = 0;
b=1;
h = (b-a)/m;
® = linspace{a,b,m+l);
for i=l:(m+l}
ul (i)=0;
u2 (i)=0;
and
ul{l) = 1;
uz2{ly = 2;
for i=l:m
kll = u2(i};
k12 = ul(i) - x{i);
k21 = u2(i) + (h/2)*x12;
k22 = ul(i) + (h/2}*kll - x(i) - h/2;
k31 = u2(i} + (h/2}*k22;
K32 = ul(i} + (h/2)*k21 - x(i) - h/2;
k4l = u2(i} + h*k3z;
k42 = ul(i} + h*k31l - x{i} - h;
ul(i+l) = ul(i) + (h/6)*(kll + 2*k21 + 2%k31 + kdl);
u2(i+ly = u2{i) + (h/6)*(kl2 + 2*k22 + 2*k32 + kd2};
end
ul (m+1)

for i=i:m+l )
yex (i) = exp(*(i))+x{i);
end

yeax(m+l)
subplot(2,1,1),plot(x,ul, *-.r', 'Linewidth',1}
hold on
subplot(2,1,1),plot(x,yex, '~b’', ‘Linewidth', 1)
xlapel("X")
ylabel('¥{%} }
legend( 'RE4 wm=8','Y exacht’}
title( ' GLE system')
axis tight
exac = yex(m+l};
m = [10 20 40 B0 160 320 640 1280};
for i=1l:length{m)

h = 1/m(i);

xe = linspace{0,1 m{i}+1);

for j=l:m(i)+l
ule(j) = 0;
= 0;

uze(j)
end
ule(l) = 1;
uze(l) = 2;
for j = l:m(i)
k1l = uZe(j):
k12 = ule(j) - xe(d);
k21 = u2e(j) + (h/2)*k12;
k22 = ule(j} + (h/2)*kll - xe{j) - h/2;
k31 = u2e(j} + (h/2}*k22;
k32 = ule(j) + (h/2)*¥k21 - xe{jy - h/2;

8/9




k4l uze(j) + h*k32;
k42 = ule(j) + h*k31 - x=e(j) - h;

ule(j+1) = ule(j) + {h/6)*(k1l + 2*k21 + 2+k31 + kdl);
uZe(j+1) = uzZe(3) + (h/6)*{k12 + 2%k22 + 2*k32 + k42);
end
errorvecrkd (i) = (abs(exac - ule(m(i)+1l))/exac);;
end

subplot(2,1,2),plot{log(m),log(errorvecrkd), '-k', 'Linew:
xlabel{ 'Log. B! m")

ylabel( 'Log. Relative Brror')

- legend{ 'Error ourve’)

coititief Convergence giaph’)

L
]
por
-

: \13:.' ui nie ule x xe vex exac i ] K1l k12 k21 k22 k31 k32

A'pp_en'di.a'{. 04 '.l:io.utine for the global convergence graph.
plot(log(m) ,log(errcrvecfeuler), '-r', 'Linewidth',1);
el |

; j"al.d{:.(glc.:;Q(m.) ' log(errorvechleun Y, o-b' tLinewidih’,1);
i hcld oan

plot(log(m),log(errorvecrkd), '-k', ‘Lin

sidth 1)

xlabel{ ‘Loyg. Hl m')

yvlabel ( "Lotg. Relative Brrox')
legend( ‘'F Rulex’ . 'Heun', "RK4)
title('Convergence graph')
axis tight

Appendix 05. Definition of the problem to be solved using oded5.
function xp = F({x,u)
xp = zeros{2,1);

xp(1) = 1{2};
xp(2) = u(l) - x;

[x.u] = oded 5('F [0, 11,[1,2]);

[x,uf:, 1]

-
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STUDENT 4
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W=y —z in(0,1)

1
u(0) = 1, /(0) ~ 2 W
Reducing the 2*¢ order ODE to 2 1%* order ODE.
Do) = fla) e (0,1)
y(0) = a (2)

_ vy _i Yo _ !
Y Lf(m] x4 [ym*w} e H

1) Comparision between Euler, Heun and 4%® order Runge-Kutta methods L{

Function approximation
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Figure 1: Function approximation
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4

For the same computational cost the 3 methods behave similar, although the better approximation is given by
the order of the methad. So the 4t order Runge-Kutta method exhibits hetter results than the Heun method,
“and this | presents better results than the Euler method. The 3 methods show suitable resuits given that the
equations to be solve are of first order, and the order of approximation of the methods is equal or greater than
one.

Logarithm of the error

Error at x=1
=10 T
—— Euler

—~—+— Heun
T A HK4

Error
L
[}

T

Number of function evaluations
Figure 2: Log Error at x=1

The error results agree with the theoretical ones, each method present better approximation with more function
evaluations; and the slope of each curve is the same than the method order of convergence (Euler=1, Heun=2,
REK4=4).
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3) ODE45

ode45 and RK4

0. 4 : ; . ;

3.5

=25

1.5

Figure 3: ODE45 - RK4

The odedh Matlab function uses a RK4 method for solving single or multiple differential equations, as shown
in figure 3 the Matlab function and the one written from the RK4 method have the same behavior. The RK4
method have an accuracy of 4** order using 4 function evaluations, which present the better relation between
accuracy and number of function evaluations in contrast with higher order methods. As the RIK4, the odeds
result could improve increasing the number of function evaluations or decreasing the step {which is the same), so
it is necessary to adjust the options using the optimset Matlab function.
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Numerical Methods for PDEs
HOMEWORK 03

Compute the numerical solution of the following the initial value problem {IVDP)

y'=y—a in(0,1)
wWo)y=1,¢(0)y=2

The exact solution of this problem is y = ezp(z) + 2.

e Implement a routine for the solution of IVP using Buler, Heun and 4th order Runge—Kutﬁé'
method. Plot the solution obtained with 8 time steps of RK4 and compare it with the: = =
Fuler and Heun results for an equivalent computational cost (i.e. same number 0{ funcmon. :
evaluations). Draw some conclusions. TR

e Check the convergerice of the methods: plot the logarithm of the error at the énd'_ point
x = 1 vs the logarithm of the number of function evaluations. Do the results agree w1t L i
theoretical convergence rates? Comment the results. -

s Solve the IVP with the oded4b Matlab function. Which method corresponds to th1_ Hincti
What can you ensure about the accuracy of the obtained solution? How cou}d you._ rnp__
the accuracy? :

First of all notice that the IVP has a second order ODE, therefore is needect to deﬁn
of equations of first order ODEs and then apply Euler, Heun and 4 01cler_ Rung
system, : k

Let us define y; = y and ya == ¢/, therefore the IVI” reads:

111232
yh =y —x in{0,1)
1n(0) =1, 12(0) = 2

and in matrix form ¢ = f(z, 7}, where:

’
-[4] 7], e
Tmlul el el
method:

e Euler: } } } e
Yies = Yi+ hfilz, Y

e Heun:

" . h - N
Yien =Y + %{kl + kg] where {
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Numerical Methods for PDEs Homework 03

s Runge-Kutia 4:

'i;'].::(a:u}w}‘&)
I Fa = flos + 5, Vit BR)
Vier =Y+ =[ky + 2k + 2ks + ky] where{ =70 T BT 2O
Al 6[ 1 e ks = ji(m-i— %,1::'4-%_762)
ky = (SL.,,%'}?, i*}“hkg)

It order to implement all three methods in matlab, three different function has been written. But
all three has similar structures. First, all three need the same four parameters to work, initial
approximation (Y0) an interval {int:=[a,b]) where the differential equation is going to be evaluated,
the number of steps (s) used to approximate the solution and of course the function f (f(x,Y)).
Second, the first part of all three functions is common and computes:

1. The step size (h).

9. Sets the matrix where solutions at each step are going to be stored (Y1), which for this
particular case has dimensions #equations by s+1.

3. Computes a vector that contains all z; equally spaced from a to b.

4. Finally the first row of Y1 is defined using initial conditions.

After this part ali three methods can be implemented straight forward inside a for loop. Which
rung i form 1 to s, and in each step computes the approximation i+1. Finally, at the end of the loop,
(Y1) contains all approximations and it’s returned as the value of the function. Notice that, in
the first row the approximation of the function is written and in the next rows the approximations
of the derivatives are written. (See files FEulerSODE.m, FHeunSODE.m, FRK4SODE.m).

Once we have all three methods ilnplerhented if we compute the approximation of the previous
funetion with 8 steps, for Runége Kutta 4 (32 evaluations of f), 16 steps for Heun and 32 steps
for Euler. We obtain the following result: :

q ¥ T
3718 o
3.5r )
ah 3716 /
a5} 37141 /
of ar1ef /
—vmm Eulber /
151 Heun q 371F
# - Runge Kutta 4 ’,/
Analytic solution -
1{1 1 1 i 1 1 Ll ] 3708 A / 1 1 L I L L
] 0.1 0.2 0.3 0.4 0.5 06 0.7 o8 0.9 1 0897 0.90975 0998 09985 (€989 0.9895 1

Figure 1: Approximation comparison. a) Analytical solution vs approximation with all three
methods and b) Detail comparison of analytical solution vs Runge-Kutta and Ieun.

As it can be seen, all three approximations are close to the analytic solution, only Euler at the
end is slightly dilferent. But even Heun and Runge-Kutta give very close approximation, if we
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zoom in the right side of the chart we notice that Runge-Kutta approximates better the solution,
Naotice for the same computational effort Runge-Kutta gives better results, this is due to the fact
that using this method, several evaluations of f are performed in ovder to compute the slope of
approximated solution at each step, while Euler only uses information at point ¢ and Heun at
points ¢ and i + 1.

2.

In order to compute the convergence plot, the error at point = 1 has been computed using all
three methods for 8, 16, 32, 64 and 128 steps. The resulting plot is:

Q T T T T T T T T
—&- Euler
G e —— Heun
T i ~—&- Runge Kutta
—sk Ty i
2 N e
[ = SO
B =S
-4t s - SN 4
R
ey
e
-8l . _
e %
S
T,

81 . -
TS o a5 A
_12 i I 1 ' 1 1 ) 1 L

0.8 1 1.2 1.4 16 18 2 2.2 24 2.6 28

Figure 2: Convergence plot. Error vs number of function evaluations.

Directly in Figure 2, can not be appreciated but using basic fitting toolbox from matlah, the
slopes are -0.96 for Euler, -2 for Heun and -4 for Runge-Kutta. This m’éifh withi the theoretical
convergence rates, because Euler is a first order method, Heun is second order and Runge-Kutta
is forth order. In the previous plot is not shown but for a low number of steps (< 8) theoretical
convergence rates are not achieved, because these rates are proved for a sufficient quantity of steps.
For these particular case, in order to achieve theoretical convergence rates, we have to use at least
8 steps.

3.

This methed corresponds to the Runge-Kutia 45 method which performs 6 evaluations of f at each
step, it is a forth order method, but uses a fifth order approximation for computing an estimation
of the relative error al each step. By using this strategy, this method is able to control step size

(7 _goodness, This means that [or at each step il the relative error is bigger than a tolerance the step

\

size can be reduced; and viceversa, if the relative error is lower than a given number the step size
can be increased and therefore solve the ode in a more eflicient way.

As well as the relative, the absolute error can also be computed, and this means that the accuracy
of this method can be ensured by imposing small enough tolerances on the relative and the absolute
error. Fherelore the accuracy can be improved by reducing the Lolerances.
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In matlab this tolerances are set with the function “odeset” and then intreduced in the function
oded$ (See lines 67 and 68 of file main.m). By using this oded5 the method is more efficient and
the difference between using this matlab function and the Runge-Kutta 4 with 8 steps is 6.42-1077.
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Numerical methods for PDEs Homework 2
Finite Differences Due: December 17, 2013

The compressed file FD_Parabolic1D.zip contains Matlab codes for the finite difference
numerical solution of a 1D parabolic equation. Incomplete codes for the explicit (FTCS) and
implicit (BTCS) methods are provided. Routines to check the convergence in time and in
space are also provided.

1. Complete the coding of the FTCS and BTCS methods.
2. Code the Crank-Nicolson method.
3. Test the three finite difference methods with the following numerical parameters:

= M=10, final time=0.1, number of steps=24
= M=10, final time=0.1, number of steps=20
= M=10, final time=0.1, number of steps=18
= M=10, final time=0.1, number of steps=5

Do the finite difference methods behave as expected? Discuss your results.

4. Check the convergence of the explicit, implicit and Crank-Nicolson methods (plot them
in the same graph) and discuss the results.
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PDE

HOMEWORK 2
Assumptions

Equations

Codin

Equation

3.

Cases

Up = Uxx

Interval a=0

For the complete FT'CS se the file parabolic_ex.m and for the complete BTCS se the
file parabolic_im.m.

FTCS

G ar e -200 e 0U®

Uin _ _r(Ui_I)rHi

+ (1 + 200" - r(Um)“”

‘For the complete Crank-Nicoson se the file parabolic_ex.m.

—l-r-(U

n+i
2 i—l)

+(1+ r)'(Ui)nJrl

+ (-0 {U) + 2r(y,, )"

All the cases is solved with the Implict Method (BTCS).
The discretization is the following:

M=10
final time . = 0.1
number of timesteps . = 20

Case 1

Initial condition
f=1-2]x-03]|
Boundary condition
g=0

h=0

1 of7
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Case 2

Initial condition
f = x(l ~X)
Boundary condition

g=0

k=0

Case 3
Initial condition

f=1
Boundary condition
g=0
h=0

20f7




Universitat Politecnica
De Catalunya
Barcelonatech

Case 4

Initial condition

f=x(3 - 2x)

Boundary condition

Case 5
Tnitial condition

fel-2}x-035

Boundary condition

3o0f7




Universitat Politecnita
De Catalunya
Barcelonatech

Methods

All cases behave as expected. Boundary coditions and initial condtions are fulfilled
for each case. The equation do not have any external source, and it is therefor
expected that the u function is going towards a straight line for time going towards

infinity, which is seen to be true for all cases.
Case 2
Initial condition

f=x(1-%)

‘Bondary condition

g=0
h=0

Explicit method (FTCS)

Duscretizition 1
M=10

final time . = 0.1
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Discretizition 2

M =10

final time.=0.1

number of time steps . =35

At 1
T=—= 5
A
0.1
L . 24 1
Discretization 1 Frm ——— =042 < = = stable
2 2
b-a
( 10 )
0.1
Discretization 2 r o= =2 > 1 = unstable
2

That is why the plots in the discretization with only 5 timesteps is giving & wrong
result. But the method does behave as expected becuase it is expected to be unstable.
Implicit method (BTCS)

Discretization

M=10

final time . = 0.1

nimber of timesteps . = 5
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The method is unconditionally stable for all timesteps wich was expeted.
Crank-Nicolsons method
Discretizition
M =10
final time.=0.1
number of timesteps .= 5
Solutioriof uisu
e [ ¥
i
This method is also unconditionally stable for all timesteps.
4.
Convergence Error
Explicit and implicit Ti‘”e = o( At, sz) (1)
Crank-Nicolson Tin+6 - O(Atz,sz) 2)




Universitat Poiitecnicé
De Catalunya
Barcelonatech

Convergence for the space denpenden part

The expected slope for all the tree diffenrent methods must be equal to 2 do to (I)
and (2). The convergence for the space denpenden part is order 2 for all methods.

—o—Impligit
——Crank-Micolson
il —#— Ewpdicit

Convergence for the time denpenden part

‘The expected slope for the explicit and the implicit methods is 1 and 2 for

Crank-Nicolson when it is the convergence conserning time. It does not make sence
to plot explicit convergence because of the stability problems, when the time
intervals get to big.

—S— | plick
—=Crank-Nicolson

I

-HD
logideltal)

It is seen from the plots, that afl the methods converges as expected. The
Crank-Nicolson method is the most exact, because it has a convergence order equal

to 2 in borh space and time, but it is also a method with more calculations steps. The L

explicit method is the fastes method, but it is unconditionally stable.

Tof7
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Homework 2

The compressed file FD_ParaboliclD.zip contains Matlab codes for the finite difference numerical solution
of a 1D parabolic equation. Incomplete codes for the explicit {(FTCS) and implicit (BTCS) methods are
provided. Routines to check the convergence in time and in space are also provided.

1. Complete the coding of the FTCS and BTCS methods
The codes made in Matlab are attached this paper when delivered.

FTCS

This scheme is also called Forward in Time Centred in Space, which means that the method Is based on
central difference in space and the forward Euler method in time. This gives a 1% order convergence in time
and a 2" order convergence in space. The numerical pf'_qblem can be written as:

U =107, +(A=20)07 +1Uf, - where i=1,...M, n20

14

The method is explicit and the solution can easily be computed. But the scheme is conditionally stable,
' At

meaning that it is stable and convergent whenever r < %. With r defined asr = o

The method have no oscillation if r £ 1.

BTCS
The scheme is called Backward in Time Centered in Space. This means that the method is based on central
difference in space and the backward Euler method in time. The numerical problem can be written as:

UP =UM—rlU™) where i=1,...M, nz0
and L(U:lﬂ) — U::_—ll—l _ 2Uin+1 + Un+1

i+l

The method is an implicit scheme and is solved by solving a linier systém of equations.
BTCS is unconditionally stable and are non-oscillating.

2. Code the Crank-Nicolson method
The codes made in Matlab are attached this paper when delivered.
The numerical problem for solving with Crank-Nicolson is shown below.

UM — g xr« UM = U+ (1 — 0) v = L(U) wherei=1,..,.M, n>0
LMY = UM - 2« 0P + U and LEOP) = ULy =2+ Ul + Ul

The Crank-Nicolson is also an implicit method that is computed by solving a linier system of equations.
The scheme is unconditionally stable. But r has to be smaller or equal to 1/2 to give non-oscillation
solutions.




3. Test the three finite difference methods with the following numerical parameters:
e M =10, final time = 0.1, number of steps =24
s M =10, final time = 0.1, nhumber of steps = 20
s =10, final time = 0.1, number of steps = 18
e M =10, final time = 0.1, number of steps =5

Do the finite difference methods behave as expected? Discuss your results.
All of the figures fram 1-6 does not show the initial conditions.

The graphs in figure 1 and 2 is made using FTCS for Example 1 with the following BC's and IC's.

Bondary conditions w(0,) =0and u(1,t) =0
Initial conditions u{x,0) =1—2+abs(x—0,5)
Solution of u=u, with the explicit method . Selution of y=u,, with the explicit methad
B8 08
B6 g 08 i)
04 N s e,
02p AR / A ey ’
\\f VY
o ! 0
[t} 05 H o 05 1 :
X X to . t 1 0o i

. : ¥
Figure 1 - FTCS for example 1, with 18 steps. Figure 2 - FCTS for example 1, with 20 steps.
The factor ris calculated for each computation in matlab. They are shown below.

At 0,0056
Ax? 0,12

At _ 0,0050
AxZ ~ 0,12

= 0,56 > 0,5 not stable T =

= 0,50 < 0,5 stable

Figure 1 shows that the method is unsiable and figure 2 is stable because r =0,5.
This also indicates that the scheme is acting as expected, since it is conditionally stable as stated in question
1.

The graphs in figure 3 and 4 is made using BTCS for Example 2 with the following BC's and IC's.
Bondary conditions u(0,t) =0and u(l,t) =0

Initial conditions u(x,0) =x*{1—x)



Solution of y=u, with the implicit method Salution of y=u_. with the implicit methad

6B - 08 i
_ 06 .05 _ 05
0.4 0.4
92 - 02
0 0
i 05 1 0 05 1
x X
Figure 4 - BTCS for example 2, with 5 steps. Figure 3 - BTCS for example 2, with 20 steps.

The graphs (figure 3 and 4) behave as expected, since they both are stable and there are no oscillations.
By increasing the time steps the solution gets more and more exact.

The graphs in figure 5 and 6 is made using Crank-Nicolson for Example 5 with the following BC's and IC’s.

Bondary conditions a0, ) =tand u(1,t) =0
Initial conditions u{x,0) =1—2+*abs(x—0,5)
Selution: of u=u, with Crank-Nicolson method ' . Solution of y=u,. with Crank:Nicolsan methad

2.8 08

26 06

. W W
G4 y | \\\\,;t,;t{\\\t\;\\

G2

B

0.4

E

0.2},

Figure 5 - Crank-Nicolson for example 5, with 5 steps. Figure 6 - Crank-Nicolson example 5, with 24 steps.

The factor ris calculated for each computation in matlab. They are shown below.

At 0,02

_ At 0,0042
T Ax2 T 012

= 2 > 0,5 oscillation r=os= e

= 0,42 < 0,5 non oscillation

The graphs (figure 5 and 6} behave as expected. They are both stable, and shows as the time increases so
do one of the boundary conditions.

It can also be seen that there is small oscillations on the solution shown in figure 5, since the factor is higher
than 0,5. As for the BTCS we can increase the time steps and we will get a more exact solution.

By looking at the 3D plot in figure 1-4 we see that the further we get in time the more the solution getsto -~
zZero. RRRS:




That makes good sense, since we are soiving a diffusion equation, with both b'oun'da'ry conditions fixed at
the value zero and that there isn’t any external force that influences the solution.
The 3D plot in figure 5-6 again shows that the solution approaches 0, the further we get in time. Here only

one of the boundaries is fixed at zero while the other is a function of t. The graph here also makes good
sense.

4. Check the convergence of the explicit, implicit and Crank-Nicolson methods (plot them in the
same graph) and discuss the resuits.
The convergence is first checked with At as a variable. That is shown in figure 7.

Convergence with constant delta x and defta t->0

250 \ T Y T T
a0t i
150
I
& 160
B
50 L
0 H == hplich g9 &
—— Ceank-Nicotson
—— Explicit
A0 - - — T L + L
B I 65 5 65 &

log(delta t}

Figure 7 - Convergence with At as variable.

The figure shows that the implicit method, Crank-Nicolson, have a convergence rate of 2. For the Crank-
Nicolson this is as expected because the method have a truncation error of O(At’,Ax’}.

Furthermore the figure shows that BTCS have a convergence rate of 0,99, this is also as expected because
BTCS have a truncation error of O(At,Ax?). The graph that shows the convergence rate for the explicit
method FTCS (red line in figure 7} doesn't make sense because the method is not unconditionally stable.

The convergence is now checked with Ax as a variable. This is shown in figure 8.

Convergense with constant delta t and delta x->0
-35 T T T T

log(Esror}
& ho A
%) o) [4;] (53 T -
v T T

4

—&— Implicit
——— Cyank-Micolsan | 3
- Explict

TR
n

&

RNy ey \
A5 3. 25 -2
Lo fog(delta %)

15 -1

._m.

Figdre 8 - Convergence with Ax as variable.




The three methods are all expected to have the same convergence rate when Ax is the variable, since they
all have a truncation error of 2™ order | space. As it is seen on figure 8 they all have a convergence of
approximate 2. The reason the explicit method (FTCS) have a stable convergence is that the stability
condition r < % is fuifilled in all 4 points on the graph.
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~wunlERICAL METHODS for PDEs
Master of Science in Computational Mechanics
Fall Semester 2013
Homework 2: Finite Differences

The compressed file FD_Parabolic1D.zip contains Matlab codes for the finite difference numer-
ical solution of & 1D parabolic equation. Incomplete codes for the explicit (FTCS) and implicit
(BTCS) methods are provided. Routines to check the convergence in time and in space are
also provided.

1. Complete the coding of the FTCS and BTCS methods.
2. Gode the Crank-Nicolson method. i
3. Test the three finite difference methods with the following numericéi'ﬁérémetéré:
o M=10, final time=0.1, number of steps=24
¢ M=10, final time=0.1, number of steps=20
¢ M=10, final timezb.l, number of steps=18
e M=10, final time=0.1, number of steps=>5
Do the finite difference methods behave as expected? Discuss your results.

4. Check the convergence of the explicit, implicit and Crank-Nicolson methods (plot them
in the same graph) and discuss the results,

Solution 1:

. FTCS method

% Resulting Matrix
= zeros (mt+l, npast+l};

a

% Initial and boundary conditions in the solution matrix
%(each time step is stored in a column): TO BE CODED
U, :) = g; U{m+l, =} = h; U(:,1) = £;

% Loop in time steps: TO BE CCDED
for § = 1 : npast % loop over time £t 0 : n
for i = 2 : m % loop over x 1 : m
Ui, 3+1) = rxU(i-1,3) + (1-2%x)*U(i,§) + rz+U{i+1,7};

L= S - - -

=
[ =]

end

==
[ I ]
]
=]
0,

The algorithm for this method is straightforward. And can be summarized in three steps:

1. We create the resulting matriz U of dimensions [M+1, npast+1]; time steps are
stored in columns;
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2. We store the boundary conditions g,  in the corresponding rows: 1, M-+1; We store
the function f at the initial value in the 1* column;

i

!

3. Loop over all the time steps: i
Loop over all the spatial nodes: |
Compute: UFTH = U7 + (1 — 20U + UL,

e BTCS method The solution provided by this method is implicit. We can obtain it by |
solving the following equation:

AUV =TU" + F
We have to fulfill the following properties:
— dimension of the A matrix is [m-1,m-11;

— UnH U™ have the dimension [m-1,1] omitting the values U(1) and U(m+1) which
contain the boundary conditions;

~F=[rg" 0 ... 0 rUﬂfl] of dimensions [m-1,1];

% Definition of matrix A and decomposition: TG BE CODED

1

2

3 al = —r; bA = 1+Zxr;
4 % A = zeros(m—1,m—1);
5 % A(l,1)y = DbA;

6 % A(l,2) = ad;

7 % for i = 2 : m2

8 % Ali,i-1} = ah;
5 % A{i,i) = DbA;

10 % A{i,i+l) = al;
11 % end

iz % A(end,end—1) = ah;
13 % A(end,end) = bAj;

-
Iy

[

% gamma is the wvariable contalner for the

-
o

‘homas: Algorithm

16 gamma = zeros(m—1,1};
17 gamma{l)} = ad/bA;
18 for i=2 : m—2

=
o

gamma (1) = aA/(bA—aA*gammél;_ f
end i
% Last element of gamma is:O';ﬁ'-

L+
(=]

B3
—

puted only once. Further-

Given this simplification we can used the vanables aA =r; bA = (1 + 2%r); as com-
ponents of the A matrix. Furthermore for the Solutlon of the final matrix equation the
Thomas algorithm will be 1mplemented as: a resuit there is 1o need to store the actual A
makrix but it's contents in a matrlx gamma of d1men51ons [m—1 1]. The matrix will have
the following form: X -
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1 gamma(1)
A - 0 1 gamma (2)
0 1
Since the A matrix is not used in matrix form the code generating it is only present in
commented form.
Untl is obtained from the following system:
AIUTH—I — p

_ Ul Fi+rpi—
Where p; = 55 ——— e

t % Loop in time steps: TO BE CODED

2 RHS = zeros{m—1,npast);

3 FB = zeros(m—1i,1};

4

5 % we compute RHS at t = 0;

6 FB(l) = r+«g{(l}; FB(end) = r+h(l};

7 RHS(:,1) = eye(m—1,m—1)*U{(Z2:m, 1) + FB;

8

9 % Tmplementation of THOMAS ALGORITHM

10 rho = zeros{m—1,1);

11 % Loop over all timesteps (no modifications on original boundary
vaiues 1

12 % and mt+l)

13 for 7 = 1 : npast

Factorization of the matrices

15 First element for Thomas Algorithm

16 rho(l) = RHS(1,3)/bA;

17

18 Inside elments for Thomas Algorithm

19 Loop over all nodes (except 1 and m—1)

20 for k = 2 : length(gamma)-1

gamma (k) = aA/ (bA—aArgamma (k—1)); This is computed ...
initially and

kept static during all iterations;

ol

14

o8

de oo

oe

21

oe

22

23 rho (k) = (RES(k, j)—alk+rho(k—1))/(bA — abhrgamma (k—1));
24 end

25 % Last element for Thomas Algorithm

2% rho(end) = (RHES (end, j)—abxrho{end—1))/ (bA—aA+gamma (end—1));

27
28
29

Thomas algorithm
Backward substitution of U n+l elements

o0 oo

30 U{m, 3+1}) = rho(end);

31

32 for k = 1 @ (m—2)

a3 U(end—1-k, j+1} = rho(end-k} — gamma (end-k)*U(end—k, j+1);
a4 end

35

36 % Update of RHS

37 FB(1l}) = rxg(j+l); FB(end) = rxh(j+1);

38 REHS (:, j+1) = eye(m—1,m-1)+«U(Z2:m, j+1) + FB;

3 end
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Solution 2:

The Crank-Nicolson method
The solution of this method is also implicit. We obtain U™*! by solving the following system:

AU = BU" 4 F

Where:

1+ 7 -5 1 [1—r 3 ]

-5 l4r - to1-r
A= . ) ;B = . ;

—~3"2- 1+7r —% % 1-—r %

—2 l+4r 5 l-r
) r {fm n ) - n n T )

F= [E (U0+1+U0) O - 0 E(UMT1+U1VI+1)]

The previous properties hold here as well:
¢ dimensions of A, B matrices [M-1,M-11;

e dimensions of U?, U™ matrices [M-1,1] omitting the boundary condition elements:
U, Unt41 '

e dimension of F matrix [1,M-1];

The solution of the system is obtained the same way, using Thomas algorithm. Where the A
matrix is not used directly but substituted by the gamma matrix:

Q

1 % gamma 1s the variable .container for the Thomas Algorithm
2 gamma = zeros(m—1,1);

3 gamma{l) = aA/bA;

¢ for i=2 : m—2

5 gamma (1) = aA/ (bA—alAxgamma (1—1});
6 end

4

[s)

% Last element of gamma is O

On the other hand the B matrix has to be formed to compute the matrix multiplication:

1 B = zeres(m—1,m—1); aB = r/2; bB = 1—r;
2 % Setup of B matrix (tridiagonal);

3 B{1,1) = bB; B(l,2) = aB;

4 for k = 2:(size(B,1)-1}

5 B(k,k) = bB;

6 B(k,k—1) = aB; B(k,k+1) = ab;

7 end

s B{end,end) = bB; B{end,end-1) = aB;

U™ is obtained similarly to the implicit method. First we compute the right hand side of
the equation stored in the matrix RHS. Then we execute the Thomas algorithm to reduce the
A matrix and the right hand side. Once this is obtained we compute the elements of U™+ in
reverse order,
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% Implementation of THOMAS ALGORITHM

1

2 rho = zeros(m—1,1);

3 % Loop over all timesteps (no modifications on original boundary values 1
4 % and m+l)

5 for j = 1 : npast

é % we compute RHS at t = ] timestep;

7 % Imposing the houndary conditions through F matrix;

8 FB(1) = z/2+{g(j)+g(j+1)); FB{end) = r/2+(h(J}+h{j+1}))};

9 % Update of RHS

10 % we Compute RHS = BxU{j) + F

11 RHS (2, j) = BxU{2:m,j) + FB;

12

13 % First element of tridiag factorization

14 rho (1) = RHS(1, j) /ba;

16

16 % Inside elments of tridiag factorization

17 % Loop over all nodes (except 1 and m—1)

18 for k = 2 : length({gamma)—1

19 % gamma (k) = ab/ (bA—ahrgamma (k—1)}; This 1z computed initially and
20 % kept static during all iterations;

21 rho (k) = (RHS(k, j)—alA+rho{k-1))/(bA — aBhrgamma(k—1));
20 end

23 % Last element of tridiag factorization

24 rho {end) = (RHS{end, j)--ah+rho (end—1}) / {(bA—aA+gamma (end—1)};
25 .

26 % Backward substitution of U n+l elements

27 U(m, j+1} rho (end) ;

28

29 for k = 1 : (m—2)

30 U(end—lmk,j+1) = rho(end—k}) — gamma (end—k)*xU (end—k, j+1);
31 end :

a2 end
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Solution 3:

1. M=10, final time=0.1, number of steps=24 Due to the nature of the FTCS method the
effect of the previous elements have a great influence on the following time step. This
drawback can be observed in the following comparison

Solution of y=u__ with the explicit method Sehudien of u=u_ with the implicil melhod

Figure 1: f = 1 Explicit method Figure 2: f = 1 Implicit method

The initial value of 1 is maintained in a much larger area compared to the implicit method,
at which the tendency to lean towards the boundary conditions is greater. The value 1
is maintained until the 5 time step for the Explicit method and only the 2™ for the
Tmplicit method.

2. M=10, final time=0.1, number of steps=20

This effect is further emphasized as we decrease the time resolution.

Soldion of utqnnwi:hthe explicdi method
ir— 7 IS T

L] 2 o4 05 08 1 o 0.2 [12} a6 (L2} 1
% x

Figure 3: f =1 Explicit method Figure 4: f = 1 Implicit method
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Sakdion of iy, wil e expici mehos Solulion of U=y, with Crank-Hicolson method
1I—

Figure 5: [ =1 — 2abs(z — 0.5) Figure 6: f=1— 2abs(:c — 0 5)
Explicit method C-N method :

At a lower resolution in time the Explicit method provides a worse approxlmatlon tha
“ the Implicit or C-N methods. L

" Both the Implicit and C+N methods provide comparable apprommatmns

Soltlon of w=u,, with the Implelt methcd

Schflon of El'=unwifh Crank-Nicolsen method

Figure 7: f = 1; Implicit method Figure 8: f - 1 C—N method
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. M=10, final time=0.1, number of steps=18

At this resolution we are at the critical value of r = 3%% = % The Explicit method should

still converge but in the approximation of some functions significant oscillations appeared
which make the method unstable for this critical value

Scldlion Bfl.ll=|im with lhe expicit method

Sohtion of u|=unwilhihe exphcit melhod

Figure & f =1 — 2abs{z — 0.5);

Explicit method Figure 10: f = 1; Bxplicit méthod . 0

Although in other cases where the gradient of the obtained U field in the ¢ direction is "
not so big the method is still stable:

Sohtion of Y=t with the expicil method Sohtlan of b= with the explicit method

0.8

04

o2

© 02 04 08 08 1
x

Figure 11: f = z(1 — z);Explicit méthdd- Figure 12: f = z(3 — 2z);Explicit method




Soluion of y=u_ with the explicit method

4, M=10, final time=0.1, number of steps=>5

Homework 2 - Matlab

]
-;’j
[

|

|
i

|

Sohtion of u=u, with the implict method

02 0.4

Figure 13: f = 1;Explicit method

a6 08

Figure 15: f = 1;lmplicit method

With this resolution we go over the critical value value of r = 1/2 making the Explicit
method completely unstable.

Solution of t=u, with the expleit method

Figure 14: f = z(3 - 2z); Explicit method

Visible difference appears between the Implicit and C-N methods. This is the result of the
fact that while the first one has a precision of At in time the last one offers At? precision.

Saohtlon af iﬁ:ll,ﬁ\with Grank-Micolson method
] - .

Figure 16: f = 1; C-N method




Homework 2 - Matlab 10

Solution 4:
Since T = O(At) + O(Az?) for the Explicit and Implicit methods, and T = O(A#?) + O(Az?)
we can treat the convergence of the methods from two different viewpoints.

First we fix Af small enough such that 7 ~ O(Az?) and vary Az to obtain the convergence of
the methods with respect to the resolution spatial grid.

Convergence wiith constant dsha € snd defta x50
3.5 T 5 ™ -

—4— Explicit
A [ —s— Implicit
= Crapk-Micolson

-5

13

én
m

log(Erran)
o

# Expliit method:23 : :
Implicit method:2.1 RN
Gamk-Micolson method:22° *~ ~ '

B5f

1
24 -2
fog(delta x)

Figure 17: Convergence with respect to Az?; f = sin(zm)

Next we fix Az small enough such that T o~ O(At) and vary At to obtain the convergence of
the methods with respect to the resolution of the time discretization.

Convergence with constant delta x and defta t->0

— & Implicit
—— Crank-Nicolson

Implicit:1

E
w
£ a0
Cranl-Micolson:2
11"
Azt
13 1 1 1 1 1 L
-1.5 -1 -10.5 -10 a5 9 -85 -8
log(delta t)

Figure 18: Convergence with respect to At; f = sin(zm)

It is difficult to plot the convergence of the three methods on the same graph, since for many
grid resolutions the Fzplicit method is unstable. As a resulf we plot this convergence on a
separate graph. Although in this case Az is not negligible from total value of 7T since it‘s value
is comparable in order to At. (m=10,{=0.1,n= [24, 48,96, 192, 384])




Convergance with constant delta x and delta t->0

Hemework 2 - Matlab

.8 T

551

68}

log(Eran)

T ¥ T

Explicit:1

. Figure 19: Convergence with respect to At - Explicit method; f = z(1 — z)

75 7 B4
log(delta 1}

-55
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Numerical methods for PDEs
Finite Differences.
Homework 02.

STUDENT 2

The compressed file FI : _ . site difference numerical
solution of a 1D parah¢ : (MQTF\ BHiuE ) CS) and implicit (BTCS)
methods are provided. pce are also provided.

1.  Complete the code S . _ ' thods.

The three codes provided for completion lack the necessary routine to compute the solution at each time
step for each point of the domain x € [a, b]. In all of them, the values of the solution have been stored in
a matrix with the following characteristics:

= Number of rows = total number of points.

=  Number of columns = number of time steps (nis) plus one.

= Content of the first column: The values of the solution at the initial time step for each poant'
(Tnitial condition: U i = 1...m + 1 such that m is the number of intervals inside the domain).

= Content of the first row from its second element {1,2): The values of the solution for each time
step at the point x = a (Boundary condition at x = a: Ul' n = 1 ...nts).

s Content of the last row from its second element (m+1,2): The values of the solution for each
time step at the point x = b (Boundary conditionatx = b: Uy .y n = 1 . ats).

=  Content of the rest of the matrix between its first and last row: at each column the solution vector

ye=[ug uy -« Up_; URTn=1..ntsisstored.
ue Ut L us

u=| : : : :
U:?wl U71n+1 Urrlfa-i-l

Finally, the routines written to complete the code of each method can be consulted in their corresponding
Appendices. In order to solve the linear system of equations at each time step in the BTCS and C-N
methods, a Cholesky factorization has been used since the matrix of the systems is symmetric and
positive definite (because for the solved problem, all its boundaries belong to Dirichlet boundary).

2.  Test the three finite difference methods with the following numerical parameters:
Case A. M =10; final time = 0.1; aumber of steps = 24,
Case B. M =10; final time = 0.1; number of steps = 20.
Case C. M =10; final time = 0.1; number of sieps = 18,
CaseD. M = 10; final time = 0.1; number of steps = 5.

Among the different problems included in the file parabolic.m to test the three methods, the problem
chosen is the second one, whose description is as follows:

U — Uy =0 inx € [0,1]
w(x,0) =x-(1—x) vx € [0,1]
w(0,t)=10 Dirichlet boundary condition
u(l,t) =0 Direchiet boundary condttwn

Bcfore running the different codes for each case, the discretization in space and time is bneﬂy analysed to
foresee problems in the stability of the method and the oscillatory behaviour of the approximated
solution.

1/14




AF Stability of the method Osciltations in the solution
Ax At r=488 ,
Ax FTCS | BTCS | CN | FTCS | BTCS | CN
Case A 0.1 0.00416 0.416 yes yes yes yes no no
Casc B 0.1 0.00500 0.500 yes ¥6s yes yes no no
Case C 0.1 0.00555 0.555 no yes yes yes ne yes
Case D 0.1 0.02000 2.000 no yes yes yes no yes

As it is known, the FTCS method is unstable for r > 0.50 and the solution it computes oscillates unless
r < (.25, However, BTCS and C-N methods are always stable, although the solution of C-N oscillates
forr > 0.50.

With regard to the oscillating behaviour of the solution for the FTCS and C-N, it is expected to not see it
since the final time is only 0.1 seconds.

FICS

Case A.




Case C.

Case D,

This method shows instability in the Case IJ since the value of r for this case is 2, far away from its
critical value (0.5). In the Case C, despite of being r greater than 0.5, the instability is not big enough for
being visually appreciable.




BCTS
Since this method is theoretically stable and its solution does not oscillate for any value of r, only the

graphs of the extreme cases for the value of # (Case A and Case I} are shown below.

Case A.

S e Ao

Case D.

As expected, the method is stable and its solutién does not oscillate, -
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Crank-Nicolson

Since this method is theoretically stable for any value of # and its solution only oscillates when r > 0.50,
only the graphs of the extreme cases for the values of # (Case A and Case D) are shown below.

Case A.

Case D,

because the final time is very small. For example, if in the Case D a final time of 10 second is chosen,
and the rest of parameters are not changed, the solution of the method oscillates as shown below: -




The oscillation is better observed if the Case D for a final time of 10 seconds is solved with the BTCS
and compared with the solution of C-N.

3. Check the convergence of the explicit, implicit and Crank-Nicolson methods and discuss the

results.

H

The methods considered have the following theoretical orders of convergence in time and space:

Order of convergence

Method In Time In Space
FTCS 1 2
BTCS 1 2
Crank-Nicolson 2 2

Since the exact sofution is unknown, we assume that a very good approximation of the exact solution
would be the one computed with Crank-Nicolson method for a number of points or time steps higher than
the maximum value of these quantities used to study the convergence.

Convergence in time

In order to be able to plot the convergence of the methods, the parameter » must be small enough as to
guarantee stability for the FTCS. For the interval of study [0, 1], » is chosen to be 100 and nis to be 2000,
and therefore # is at most 0.5, ERREE

——+-— Explick
—-%-= kmglizit
—&—Crark-hicolson

Since the slopes of the lines are 1 for the FTCS (Explicit) and BTCS (Implicit) and 2 for the Crank-
Nicolson method, the theoretical convergences in time are achieved.
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Convergence in space

To study this convergence, the number of time steps has been chosen big enough as 10 avoid problems of
stability or oscillation while computing the solution for different values of m.

R Cenvargense Wi eonsiént dekatand dr¥a ki
T T

;___.:%,%;!_5

Looking at the previous graph, for the three methods a convergence rate in space of 2.1 has been
obtained, value that matches well the theoretical value of 2.
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Appendix 01, Routine for the FTCS method.

% Initialize U matrix
U = zeros{m+l,npast+l);

% IC in U
for i=l:(m+i}
U(i,1) = £(i);

end

% BC in U

for i=2:(npast+l})
U{1,i) = g(i};

i U{mbl, i) = hi);
fend
]%fbémpﬁting solution
for: j=2:({npast+1}
for i=2:m

. end
- end

U{i,j} = r*U{i-1,3-1} + {1-2*%r)=U(Li,j-1) + r*U(i+l,5-1);




Appendix 02. Routine for the BTCS method,

% Constant theta(0}
0= 1;

% Definition and decomposition of matrixz A.
A = zeros(m-1};

A{L, 1) = 1 + 2+r*0;
A{l,2) = -r*0;
A{m-1,m-2) = -xr*0;
A(m-1l,m-1} = 1 + 2%r*0;
if m>3
for i=2:(m-2}
A(i,i-1) = -x*0;
A(i,i) = 1 + 2*r*0;
B{i,i+l) = -x*0;
end
end

L = chol(A, lower');

% Definition of matrix B.
B = zercs(m-1);
B(l,1) = 1 = 2%r*(1 - 0});
B{1,2) = r*{1 - 0);
B(m-1,m-2) = r*{1 - Q);
B{m-1,m-1) = 1 « 2%r*(l - O};
if m>3
for i=2:(m-2)
B(i,i-1) = r*(1-0);
B(i,i) = 1 - 2*x*(1-0};
B(i,itl) = r*(1-0);
end
end

Initialize U matrix and F vector
zeros{mt+l,npast+l);

%
u
F zerog{m-1,1};

% IC in U

for i=l:(mt+l)
U(i,1) = £{i);

end

% BC in U

for i=2:(npast+l)
U(1,i) = g(i);
U(mt+1l,1) = hi{iy;

end

% Computing solution
for j=2:(npast+l)
F(1,1) = x*0*U(1,3) + r*(1 - 0)*U(1,j-1);
F(m=1,1) = r*0*U(m+l, ) + r*{l - O)*U{m+l,j-1);
for i=2:m
ujmenosl{i-1,1}) = U{i,i-1);
end
Y = L\({B*ujmenosl) + L\¥;
uimasl = L'\Y;
for i=2:m
U{i,Jj) = ujmasi(i-1);
end
end
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Appendix 03. Routine for the Crank-Nicolson method.

% Constant theta(O)
0= (1/2);

% Definition and decomposition of matrixz A.
A = zeros(m-1);

A(1,1) = 1 + 2%¥x*0;

A(l,2) = -x*0;

Alm-1,m-2}) = ~x*0;

A(m-1,m-1) = 1 + 2*r*0;

if m=>3
for i=2:(m-2)
A(i,i-1) = =r*0;
A(i,i) = 1 + 2*x*0Q;
A(i,i+1) = —r*0;
end
end

I, = chol(A, 'lower');

% Definition of matrix B.
B = gerog(m~1);
B(l,1) =1 - 2%r*(1 - 0);
B(1,2) = r*{1 - 0);
B(m-%,m-2) = r*¥{1 - Q};
B(m-i,m.l) = 1 — 2*r*(1 - 0);
if m>3
for i=2:(m-2}
B(i,i-1) = r*{1-0);
B(i,i) = 1 - 2*r*(1-0);
B(i,it+l) = r*{1-0);
end

end

% Initialize U matrix and F vector
U = zeros(mt+l,npast+l);

F zeros{m-1,1);

]

% IC in U

for i=1:{m+l)
U{i,1) = £(i);

end

% BC in U

for i=2:{npast+1)
U{l,i) = g(i);
U{mt+l, i) = h(i};

end

% Computing solution
for j=2:(npast+l)
F(1,1) = r*0%U(1,3) + £*(1 - O)*U(Ll,j-1);
F(m-1,1} = r*0*U{m+l,]J) + r*(1l - O)*W(m+l,J-1);
for i=2:m
ujmencsl{i-1,1) = U(i,j-1);
end
Y = L\ (B*ujmencsl) + L\F;
ujmasl = L'\Y¥;
for i=2:m
U{i,j) = ujmasl(i-1};
end
end
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Appendix 04. Routine for the convergence in time.

% Checcks the convergence for the parabolic pde with Dirichlet b.c.

% Order in At
clear all; ¢lose all; cle

a = 0;
b =1;
tfin = 0.1;

% Number of subintervals
= 100;

x = 1/m;

{a:Ax:b];

sin(x*pi);

= 0;

= 0;

T rh KOS
n

% Number of steps for the first computation
npast = 2000;

At = tfin/npast;

t = [0:Atinpast*At];

% Reference solution (it i considered as exact)
U = parabolic_cn(a,b,m,At/(2°6),npast*(2"6),£,q9,h);
501 = U(:,npast*{276)+1});

npastd = npast;
ALO = AL;

% Computation with different walues of At
Ats = []; '

errores_ex = !

errores_im
errores_cn =

[
[
[

~ e wa

for i=0:4
% Explicit
U_ex = parabelic_ex{a,b,m,At,npast,f,g,h});
aprox_ex = U_ex{:,npast+l);
error_ex = norm{{sol - aprox_ex});
errores_ex = [errores_ex,error_ex];
% Implicit
U_im = parsbeclic_im{a,b,m At,npast,f,qg,h);
aprox_im = U_im(:,npast + 1};
error_im = norm({scl - aprox_im});
errores_im = [errores_im,error_im];
% Crank-Nicolson
U _cn = parabolic en{a,b,m At,npast,f,g,h);
aprox_cn = U_cn(:,npast + 1};
error_cn = norm{{sol - aprox_cn));
errores_cn = [errores_cn,error_cnl;
% Ex. + Im. + Cn.
Ats = [Ats,At];
At = At/2;
npast = npast*2;

end

% Graphical representation

figure(2);clf
plot(;og(ﬂts),1og(errores“gx),'——+r‘,'LineWidth',1)
hold: on’:-in

plot(log{Ats)},log({errores_im},'-.xb', 'TineWidth',1}
hold - on "

plot(log{Ats),log(exrrores_cn}), '-0')
xlabel{ ' 'log(delta t}')

ylabel{'log(Error)')

title( 'Convergence with constant delta x and delta t->0")

legend{ 'Explicit', 'Implicit','Crank-Nicolson'}

11714




Least squares approximation

= polyfit(log{Ats),log({errores_ex),1};
= log(Ats(3)) + 0.125;

= log({errores_ex(3}) - 0.125;

text (x, vy, num2str(p(l},2}))

%
P
X
Y

Least squares approximation
polyfit(log{Ats),log(errores_im),1};
log(Ats(3)) + 0.125;
log(errores_im(3}) - 0.125;
ext{x,y,numstr{p(1},2})

%
P
X
¥y
t

Least squares approximation
polyfit(log{Ats),log({errores_cn),1l};
log(hts(3)) + 0.125;
log{errores_cn(3}) - 0.125;
ext(x,y,num2str(p(l},2})

nowon

%
P
X
Yy
t

clear all
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Appendix 05. Routine for the convergence in space.

¢ Checcks the convergence for the parabolic pde with Dirichlet b.c.
% Order in Ax

clear all; close all; clc

]

0:
1

[
i

il ~+ =

fin 0.1;

% Number of time steps
npast = 50000;

At = tfin/npast;

t = [0:At:npast*hAtl;

% Number of subintervals for the first computation

m= 4;

Ax = 1/m;

% Reference solution (it is considered as exact)
x = [a:Ax/(2"4):b];

f = sin(x*pi);

g = U; \

h = 0;

U = parabclic cn{a,b,m*{2"4),At, npast,f,g,h);

sol = U(1l:2"4:m*(2"4)+1 npast+l);

% Computation with different values of Ax
Axs = {];

errores_ex = []}

errores_im [1;:

errores_cn = [];

Ax = 1/m;

= [a:Ax:D];

sin{x*pi);

H

= 0;

Explicit
_ex = parabelic_ex{a,b,m,At,npast,f,9,h);
aprox_ex = U_ex(1l:2"i:mt+l,npast+l);
error_ex = norm{{sol - aprox_ex});
errores_ex = [errores_eX,error_ex];
$ Implicit
U_im = parabelic _im(a,b,m,At,npast,f,qg,h};
aprox_im = U_im(l:2"i:mt+i,npast+l);
error_im = norm{{sol - aprox im)):;
errores_im = [errores_im,error_im];
% Crank-Nicolson
U_cn = parabolic_cn(a,b,m,At,npast,f,g,h);
aprox_c¢n = U_cen(l:2%i:m+l,npast+l);
error_cn = norm{(scl - aprox_cn));
errores_cn = {errores_cn,error_cnl;
Axs = [AxXs,Ax];
m = m*2;

end

[= e T B ]
11

% Graphical representation

figure(l},clf
plot{log(Axs),log(errores ex), -+', log{Axs),log{errores_im), -
%x',log{Axs),log({errores_cn}, '-o’)

xlabel('log({delta x}'}

ylabel('log{Error)'}

title('Convergence with constant delta t and delta x->0'})
legend{ 'Explicit', 'Tmplicit', 'Crank-Nicolson',2)

% Least squares approximaticn. Explicit.
p = polyfit{log(Axs),lecg(errores_ex),1};
x = log(Axs{3))+ 0.125;
Y
t

log(errores_ex{3)} - 0.125;
ext (X, ¥, num2str{p{l).2))
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% Least squares approximation. Implicit.
p = polyfit(log(Axs),logferrores_im}),1};
x = log{Axs{3)) + 0.125;

¥y = log{errores_im(3)) - 0.125;
text{x,y,numZstr(p{l),2))

Least squares approximation. Crank-Nicclson.
= polyfit{log(Axs),log{errores_cn},1});
log{Axs(3}) + 0.125;

= log{errores_cn{(3)) - 0.125;
ext{x,y num2str{p{l),2))

il

%
©
X
Y
t

clear all
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Numerical Methods for PDE

Homework 2: Finite Differences
STUDENT 4
(EXCELCLENT)

1) Results.

The problem solved is a parabolic 1D problem 4% = gi"‘;, with boundary conditions w(0,£) = ¢, u(1,£) = 0 and
initial condition u(z,0) =1 — 2 % (x — 0.5).

The prablem is solved using backward, forward and Crank-Nicolson schemes for time discretization. For the 3
methods is used M =10 and ¢y = 0.1.

Salstion of uzu, with the explicit method

(a) Steps=24

Solution of U with the explicit method

(c) Steps=18

0.8

0.8

4

ek

Solution of o= with the explicit meihod

(b) Steps==20

Solution of vy with the explich method

N

o2 04 0688, T

{d) Steps=5

Figure 1: Explicit method
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The solution obtained using the explicit method (figure 1) is highly unstable when the condition number r = ﬁ2

is higher than 1/2 (figures 1(c) and 1(d)), and present oscillations when the condition number is higher than 1 /4
{figure 1(b)).

Solution of u=u_ with the implicil rethod Salution of u=u_ vith the fmplicit method

08 0.8

06 R 0.8

04 7=y o4

02 0.2|

(a) Steps=24 () Steps=20

Solufign of usa with the implicll method Solution ol ey, with the implict mathod

[t1:]

05 N

08

0.8

N AN ) ' .
oy 1 AR
0.2 7

0.2

(c} Steps=18

Figure 2: Implicit method :

The solution obtained using the implicit method is unconditional 1l _ ; e
The solution obtained with the Crank-Nicolson method is also un ondition eS¢ ht oscillations
when the condition number is much higher than 1/2 (figure B(d) ' '




Numerical Methods for PDE - Homework 2

Sohifion oful=|z“ with Crank-Mcolson mathod
1

o8

08

=

04

0z

{a) Steps=24

Salution of u=u_, vith Grank-Nicolson method
1

0.8

a6 J I
= 7 N

0.4 F‘*\
/—-1_\‘\

0.2

a
] 02 0.4 6 o0e 1

(c) Steps=18

Solufion of u=1, with Grank-Nicolson metiod
1

o8

05

EN

G.4

%\\

0.2

o 02 04 [¢15] 0.8 1

(b} Steps=20

Solution of U=, with Crank-Nicolson method
1

08

0.5

ES

0.4]

0.21 2 S

{d) Steps=5H

Figure 3: Crank-Nicolson method

2) Convergence.

The convergence in x for the 3 methods is quadratic as expected, because in the 3 cases a central finite difference

method is used for the second derivative.

The convergence in time for the explicit and implicit methods is linear according to the Fuler method used; the
convergence for the Crank-Nicolson method is second order as expected.
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log{Erron)

lag{Error)

Convargsnce with constant delta x and deita t->0

10 Y T T T
—— Implicit h
—8-— Crank-Nicoison

1072 |} —+— Explicit

1wk

10

10°F

107

o

1wk

10-‘9 L ] 1

167° 10° 10 10* 10
log(delta t)
s
Figure 4: Convergence in time
- Convergence with censtant deita t and delta x—>0

0 T
—6— Implicit
—»— Crank—Nicolsen

s | ~=— Explicit

w07 k

10k E

1t . . . : . .

10* 10" 10
log{delta x)

Figure b:

Convergence in space
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The compressed file FD_ParaboliclD.zip contains Matlab codes for the finite difference numerical
solution of a 1D parabolic equation. Incomplete codes for the explicit (FT'CS) and implicit {(BTCS)
methods are provided. Routines to check the convergence in time and in space are also provided.

1. Complete the coding of the FTCS and BTCS methods.
2. Code the Crank-Nicolson method. _
3. Test the three finite difference methods with the following numerical parameters:
o M=10, final time=0.1, number of steps=24
e M=10, final time=0.1, number of steps=20
¢ M=10, final timg=0.1, number of steps=18
o M=10, final time==0.1, number of steps=5 .
Do the finite difference methods behave as expected? Discuss y'o.u'r. results.

4, Check the convergence of the explicit, implicit and Crank-Nicolson methods (plot them in
the same graph) and discuss the results.

In order to complete the FTCS and BTCS methods, first of all the generation of B and A matrices
has been done, respectively. Then the data structure used to store the results is generated. For
both methods, the results are stored in a matrix named U. The column of this matrix determines
the time-step and the row the spatial position. Once we have U, bounda.ry a.nd 1n1t1a.1 conditions
are prescribed in it. : -

Then, after setiing all the prescribed information, a loop over all time-steps is p:erformed For
the explicit method, in each time step a mafrix times a vector gives'u$ the solution. Meanwhile,
for the implicit method a system of equations is solved. In order to compute the solutions, first
the system matrix is decomposed using Cholesky method and the two trivial systems of equations
are solved. Cholesky has been chosen because we only have Dirichlet boundary conditions and
therefore the resulting matrix will be always symmetric positive definite.

For coding the Crank-Nicolson method, the same strategy as in the BTCS method, has been
used. The difference between them, lies is the definition of B matrix and A matrix (the last one
is the identity for the implicit BTCS). Then, after setiing all prescribed information —boundary
conditions, initial conditions and the definition of A and B— and also the generation of an empty
masrix used to store the solution, a loop over time is performed. In each time step a matrix times
a vector is done, but also a system of equations is solved. This system of equations is solved also
using Cholesky, as what is done for the implicit case.
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All three methods has been tested by using the 5 proposed equations, but at this point only
remarkable results are presented. The equation chosen for doing the analysis is the fifth, because
it containg & time dependent Dirichlet condition, and if the method works wetl with this kind of
boundary conditions it’s also expected to do so with constant or null boundary conditions.

For the explicit method, using 5 or 18 time steps the solution is not converging, this is completely
what it’s expected, because v > 1/2. Then, using 20 or 24 time-steps the solution is converging.

Sclution of uzu, with the explicit method
1

0.8
0.6
B

0.4

0.2 ] N

0
0 0.5 1

Figure 1: Result with explicit method performing 18 time-steps (r = 0.5556).

As it was said before, on Figure 1 we can see that the method is not converging when we are using
only 18 time-steps. The implicit method, converges for any number of time-steps, although the
sclution is more accurate as we increase the number of time-steps used. Here the solution using b
time-steps is presented.

Sclution of uz=u,_ with the implicit method
1

0.8
0.6
=

0.4

0.2

Figure 2: Result with implicit method performing § time-steps.

Figure 2 shows that even using a large time-step the solution is converging. Finally the Crank-
Nicolson methods also converged for any number of time-steps. However when r > 1/2 the solution
obtained presents oscillations. This behavior is also expected and characteristic of this method.
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Solution of u=u,  with Crank-Nicolson method
1

0.8
0.6
>

0.4

0.2

Figure 3: Result with Crank-Nicolson method performing.:S ﬁime—steps (r=2).

As it was said before, when we apply Crank-Nicolson method with r = 2, we expect to have an
oscillating, but converging, solution. This behavior is observed clearly in Figure 3.

4.

The convergence analysis depends on the time discretization, but aisb;'oﬁ the spatial discretization.
Therefore this analysis must be divided in two parts. On one hand, lét’s focus in the convergence
in time. For all three methods, a small Az has been kept fix in order fo see how affects to the

error the reduction of At, the resulting plot is:

Convergence with constant delta x and delia t—>0

250
~——t— Explicit
200} —&— Implicit |
— (Grank-Nicolson
180
5
m 1001
=
p=
S0}
o ¢ o §-§99— =]
5 . . . . .
-8 -7.5 -7 -6.5 -6 -5.5 ~5

log{deHa t)

Figure 4: Convergence rate keeping Az and reducing At, for explicit, implicit and Crank-Nicolson
methods.

Notice that explicit method is not working well, because a very small spatial discrefization has
been chosen in order to minimize the error dependence on it. Therefore r values are all over 1/2,
thus the method is not converging. In order to reduce all r values, instead of performing the
analysis using 15, 30, 60, 120 and 240 time-steps, 500, 1000, 2000, 4000 and 8000 have been used.
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Therefore instead of having r’s between 16.67 and 1.042, we deal with r's between 0.5 and 0.03125.
Then the resulting plot is:

Convergence with constant delta x and defa 1—=0

-6

log{Error)

—-+— Explicit
—&— Impiicit
—— Crank—Nicolson

-20 SR ST 1 )
=11.57 -11 —10.5°7. =10 -9.5 -9 -8.5

o _' ~log(delta t)

Figure 5: Convergence rate keeping Az f;‘an'.l_' réducing At, for explicit, implicit and Crank-Nicolson
methods. (Using small At for the analysis). -

As it can be appreciated, the slopes of the obtained straight lines are 2 and 1. This is what we
were expecting, because for-the FT'CS and BTCS methods the error depends linearly with the
time-step and for the Crank-Nicolson it dépends with the square of the time-step. On the other
hand, the convergence in space for all three methods is:

Convergence with constant delta t and delta x—>0

—+— Explicit ' -
-4 —e— Implicit’ - |-
—— Crank-Nicolson| .- - -

Tlog(dslia %)

Figure 6;: Convergence rate keeping At and .'reduciﬁ'g Az, for explicit, implicit and Crank-Nicolson
methods.

As it was expected the slope of all three straight lines is 2. For all three methods, the spatial
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discretization is the same and it depends on the square of the time-step.

In order to obtain the results showed above, some changes has been made to the given codes. In
the time convergence in time analysis, instead of computing the reference solution with implicit
method, Crank-Nicoloson has been used. Although, the same results has been obtained with
implicit method and a really small At. In the spatial convergence analysis, the given number of
time-steps has been increased, because some effect of time discretization was polluting the result
for the smaller Az used.
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Question 1 [25 marks]

(a) If n point Gaussian quadrature is used for numerical integration state the order of
the polynomial that is integrated exactly. [2 MARKS]

(b) State which if any, of the following integrals can be integrated exactly using Gaussian
quadrature and give the optimal order of the rule in each case.

() f (7x'0 +9x%)ax, (i) f coshxdx, (iii) f M, (iv) f xPdx  [4 MARKS]
0 0 0 0

(c) Use 2-point Gaussian quadrature with weights w, = w, =1 and Gauss points

& = —1/\/5, &, = +1/4/3 to perform numerical integration ofj: (3 - 8(cosx)2 )Ix.
[4 MARKS]

(d) The second order ordinary differential equation

2
aY LAY vt 2o
dt2 dt

is defined over the domain 0 <7 <1, and is to be solved numerically subject to the initial
conditions Y(0) =0, dY(0)/dt =1, where Y(¢) is the exact solution.

(d1) Reduce the above second order ordinary differential equation to a system of first order
ordinary differential equations. [4 MARKS]

(d2) State the backward Euler method for integrating the system of first order ordinary
differential equations in (d1) above and hence express the non-linear system of equations that

must be solved to take the first time step in terms of time step size Af. [5 MARKS]

(d3) State the advantages versus disadvantages of explicit and implicit methods for solving
ordinary and partial differential equations. [6 MARKS]

TURN OVER
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Question 2 [25 marks]

The differential equation

i(aU)—i(bd—U) =0
dx de\ dx

is defined over the domain 0 < x <1 where U(x) is the exact conservation variable, and
a(x), b(x) are the respective wave speed and diffusion coefficients.

The equation is to be solved numerically on a uniform grid with three interior nodes and four
equally spaced intervals of size / subject to the boundary conditions U(0) =3, U(1) =15.

Given that the wave speed a(x) is constant with a;,,, = 60 over each grid interval
i =1,2,3,4 and diffusion coefficient h(x) has piecewise constant variation over the grid

intervals (indicated bGIOW) where b1+1/2 = 40, b2+1/2 = 50, b3+1/2 = 85, b4+1/2 = 150,

b1+1/2 b2+1/2 b3+1/2 b4+1/2

40 50 85 150
i=1 i=2 i=3 i=4 i=5

Jiv1/2 = Ji-1/2

(a) use the finite-volume approximation =0, where

U +u; Uj | — U,
fi+1/2=ai+1/2—(l Hl)—bm/z(—”l ’),

2 h
to show that the resulting matrix system takes the form

1440 -680 0 \(up 2280
-920 2160 -1240 {juz |=| O [9 MARKS]
0 -1480 3760 |\ uy 34200

(b) Write down the point Jacobi method for solving the linear system Ax =b for a general
matrix A and perform 2 iterations on the above matrix system. [7 MARKS]

(c) Write down the point Gauss-Seidel method for solving Ax =b and perform 2 iterations

on the above matrix system. [7 MARKS]
(d) Explain any advantage of one method over the other. [2 MARKS]
TURN OVER

Page 3 of 7



Question 3 [25 marks]

The one dimensional convection equation is defined over the domain 0 < x <1 with constant
wave speed a and is written as

Ut"'f(U)x:O

where f(U) = aU . The equation is to be solved using an upwind scheme written as

n+l n At n n
up  =u _7(][141/2_][1’—1/2)

where fz}jrl /o denotes the discrete flux at time level n on cell face i+1/2, h is the grid

interval size, At the time step and

au; az=0
Jivia =1 ! 0
au, | a<
(a) Is the above method locally conservative? Explain [4 MARKS]

(b) Write down the explicit scheme and deduce the stability conditions which ensure that the
method is positive for

1) a positive wave speed a > 0,

i1) a negative wave speed a < 0.

(Hint: an explicit method of the form u/*' = a_u!", +..+ agu] +..+ a,u is called positive

4 1+r

and is stable if all coefficients are positive and sum to unity, that is a_,,...,a, >0 and
a_j+..+og+..+a,=1) [6  MARKS]

(c) Use the above explicit scheme to compute the solution after one time step for a =10 on a
one-dimensional uniform grid with three interior nodes and four equally spaced intervals,

with boundary condition U(0) =1, initial conditions ug =0.1, ug =0.1, ug =0.1, ug =0.1
and Ar = 0.25. Is the result consistent with your stability analysis? /4 MARKS]

Question 3 continued over leaf

TURN OVER
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Question 3 continued

The implicit upwind finite volume scheme is written as
n+l n A n4l n+l
i =u _7(][141/2_][1’—1/2)

where the upwind flux given above is now defined implicitly at time level n+1.

(d) Write down the fully implicit scheme and formulate the method to compute the solution
after one time step for the same problem as posed in (c) above, again using the same one-
dimensional uniform grid with four equally spaced intervals with boundary condition

U(0) =1, initial conditions 3 = 0.1, u§ = 0.1, u§ = 0.1, u§ = 0.1 and Ar=0.25.
[7 MARKS]

(e) Derive the leading truncation error of the implicit method and state if the method is
consistent. [4 MARKS]

Page 5 of 7
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Question 4 [25 marks]

4 : The partial differential equation

W _, 0%
ot axz

is defined over the domain 0 < x <1 where b is constant, and is to be solved numerically
subject to the boundary conditions U(0,7) =1.0, U(l,f)=1.0 and initial condition

U(x,0) =Uy(x) (defined below), where U(x,?) is the exact solution.

The explicit forward time centred space scheme is expressed in the form

n+l n n n n
wi = = Uiy = 2u; +u;)

where u = h is the grid interval size, Az the time step, suffix 7 is a spatial index ( x-

el
h2
direction) and superfix 7 is the time level.

(a) Compute the solution after one time step using the above method with b =3 and
At =0.25 on a uniform grid with four equally spaced intervals together with the above

boundary conditions and initial data ug =4.0, ug) = 8.0, ug =4.0 defined at the three
interior nodes. [3 MARKS]

(b) Determine the explicit stability condition for the method (with positive coefficients) and
use the condition to determine if the above calculation is stable. [4 MARKS]

The implicit backward time centred space scheme is expressed in the form

uln+1 - uln = M(u?:l] - 2uln+1 + u?_+11)
(b) Calculate the leading truncation error of the implicit scheme. [4 MARKS]

(c) Write down the resulting system of implicit equations expressed in terms of u , that must

be solved in order to compute the solution at the 3 interior nodes of the above grid after one
time step. [7 MARKS]

(d) Using the above boundary conditions and initial data with b =3 and Af = 0.25 compute
the solution at the 3 interior nodes after one time step via Gaussian elimination and comment
on stability. [7 MARKS]

TURN OVER
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Hints:
Gaussian Elimination involves reducing a matrix to upper triangular form by row operations.
The solution is obtained by back substitution.

END OF PAPER

Page 7 of 7
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